一 互斥锁基本操作函数
//获取互斥所,阻塞式的,获取不到就死等
int pthread_mutex_lock(pthread_mutex_t *mutex);
//尝试获取互斥锁,获取不到返回错误码,成功返回0
int pthread_mutex_trylock(pthread_mutex_t *mutex);
//解锁,成功返回0
int pthread_mutex_unlock(pthread_mutex_t *mutex);
二 互斥锁的几种常用属性及用法
应该是出于程序健壮性和互斥锁执行效率的考虑,此出现以下到多种属性,
使用时根据具体情况加以选择
2.1 默认互斥锁类型
初始化 pthread_mutex_t类型变量为PTHREAD_MUTEX_INITIALIZER
特性:1 非加锁线程可以解锁(这个锁没有指纹识别功能,任何人有钥匙都能开~_~)
2 线程嵌套调用锁,会产生死锁
2.2 适应锁
初始化 pthread_mutex_t类型变量为PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
特性:与默认锁基本一直,唯一不同在于当产生嵌套锁时,标准描述为结果未定义
2.3 检错锁
初始化 pthread_mutex_t类型变量为PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
特性:1 非加锁线程不可以解锁(这个锁有指纹识别功能,有钥匙没有上锁人的指纹是不能开地^_^)
2 线程嵌套调用锁,再次尝试加锁,pthread_mutex_lock返回错误码,而不是死等,所以避免了简单到死锁
特性:1 非加锁线程不可以解锁(这个锁有指纹识别功能,有钥匙没有上锁人的指纹是不能开地^_^)
2 线程嵌套调用锁,再次尝试加锁,pthread_mutex_lock返回成功,内部有个计数,每lock一次就+1,每unlock一次就-1,当该计数为0时表示资源可用
三 解锁操作
当调用pthread_mutex_unlock后使资源再次可用时,会触发调度程序,决议谁将获取该锁
(不一定是当前线程哦,即使在unlock后执行lock^_^)
测试环境:ubuntu 12.04
测试代码:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define THREAD_NUM 3
#define USE_MUTEX
//#undef USE_MUTEX
#define USE_MUTEX_NORMAL 0
#define USE_MUTEX_ERRCHECK 0
#define USE_MUTEX_RECU 1
#define USE_MUTEX_ADAPTIVE 0
#define USE_TRYLOCK 1
#define CASE_RECULOCK 1
#define CASE_UNLOCK_BY_UNLOCKER 1
#ifdef USE_MUTEX
#if(USE_MUTEX_NORMAL)
pthread_mutex_t g_mutex_thread_count = PTHREAD_MUTEX_INITIALIZER;
#elif(USE_MUTEX_ERRCHECK)
pthread_mutex_t g_mutex_thread_count = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
#elif(USE_MUTEX_RECU)
pthread_mutex_t g_mutex_thread_count = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
#else
pthread_mutex_t g_mutex_thread_count = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
#endif
#endif //USE_MUTEX
int g_thread_count;
void increment_thread_count(unsigned thread_id)
{
#ifdef USE_MUTEX
#if(CASE_RECULOCK)
int iret = 0;
printf("thread %u lev 1 before call lock function\n", thread_id);
iret = pthread_mutex_lock(&g_mutex_thread_count);
printf("thread %u lev 1 lock return value = %d\n", thread_id, iret);
if(0 == iret)
{
g_thread_count++;
pthread_mutex_unlock(&g_mutex_thread_count);
}
#endif //CASE_RECULOCK
#else //USE_MUTEX
}
void *pthread_proc_function(void *arg)
{
int iret = 0;
char str_thread_id[8] = {0};
printf("thread %u g_mutex_thread_count = %u\n", (unsigned)pthread_self(), g_thread_count);
#ifdef USE_MUTEX
#if(CASE_UNLOCK_BY_UNLOCKER)
iret = pthread_mutex_unlock(&g_mutex_thread_count);
printf("thread %u unlock by unlocker return value = %d\n", (unsigned)pthread_self(), iret);
#endif
#if(USE_TRYLOCK)
iret = pthread_mutex_trylock(&g_mutex_thread_count);
printf("thread %u lev0 trylock return value = %d\n", (unsigned)pthread_self(), iret);
#else //USE_TRYLOCK
iret = pthread_mutex_lock(&g_mutex_thread_count);
printf("thread %u lev0 lock return value = %d\n", (unsigned)pthread_self(), iret);
#endif //USE_TRYLOCK
if(0 == iret)
{
increment_thread_count((unsigned)pthread_self());
pthread_mutex_unlock(&g_mutex_thread_count);
}
#else //USE_MUTEX
increment_thread_count((unsigned)pthread_self());
#endif //USE_MUTEX
}
int main(int argc, char **argv)
{
pthread_t thread_id[THREAD_NUM];
int i = 0;
#if(USE_MUTEX_NORMAL)
printf("use mutex normal\n");
#elif(USE_MUTEX_ERRCHECK)
printf("use mutex error check\n");
#elif(USE_MUTEX_RECU)
printf("use mutex recursive\n");
#elif(USE_MUTEX_ADAPTIVE)
printf("use mutex adaptive\n");
#endif
#if(CASE_RECULOCK)
printf("have recursive mutex lock\n");
#endif
#if(CASE_UNLOCK_BY_UNLOCKER)
printf("have unlock by unlocker\n");
#endif
for(i = 0; i < THREAD_NUM; i++)
{
pthread_create(&thread_id[i], NULL, pthread_proc_function, (void *)i);
}
for(i = 0; i < THREAD_NUM; i++)
{
pthread_join(thread_id[i], NULL);
}
printf("main thread total count: %u\n", g_thread_count);
exit(0);
}
参考资料:
1· http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_mutex_lock