Partial differential equations and the finite element method 3-FEA1.md

本文介绍了Galerkin方法及其重要的特例——有限元法。通过介绍一般框架、离散问题及误差分析等内容,文章详细阐述了该方法的基本原理,并解释了如何通过一系列有限维子空间求解无限维希尔伯特空间的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

This part is devoted to introduce the Galerkin method and its important special case, the Finite element method.

Consider the general framework

Let VVbe a Hilbert space, a(.,.):V×VR a bilinear form and lVl∈V′. It is our task to find uVu∈V such that
(1)

a(u,v)=l(v)a(u,v)=l(v)

We assume that the bilinear form a(.,.)a(.,.) is bounded and V-elliptic, i.e., that there exist constants Cb,Cel>0Cb,Cel>0 such that

|a(u,v)|CbuVvV|a(u,v)|≤Cb∥u∥V∥v∥V

and
a(u,v)Celv2Va(u,v)≥Cel∥v∥V2

Recall that the weak problem (1) has a unique solution by the Lax-Milgram lemma.


The Galerkin method

As VV is infinite dim function space. The Galerkin method is based on a sequence of finite dimensional subspaces {Vn}n=1V, VnVn+1Vn⊂Vn+1, that fill the space VV in the limit. In each finite-dimensional space Vn, problem (1) is solved exactly. It can be shown that under suitable assumptions the sequence of the approximate solutions {un}n=1{un}n=1∞ converges to the exact solution of problem (1).

Discrete problem

Find unVnun∈Vn such that
(2)

a(un,v)=l(v),vVna(un,v)=l(v),v∈Vn

Lemma 1 (Unique solvability) Problem (2) has a unique solution unVnun∈Vn,.

Proof: Recall Lax-Milgram lemma : Let VV be a Hilbert space, a(.,.):V×VR a bounded V-elliptic bilinear form and lVl∈V′ Then there exists a unique solution to the problem

a(u,v)=l(v)a(u,v)=l(v)
.

Suppose space VV has a finite basis {vn}n=1Nn, then

un=j=1Nnyjvjun=∑j=1Nnyjvj

where yjyjs are unknown coefficients.
a(un,vi)=j=1Nnyja(vj,vi)=l(vI)a(un,vi)=∑j=1Nnyja(vj,vi)=l(vI)

Denote Sn={a(vj,vi)}Ni,j=1Sn={a(vj,vi)}i,j=1N, Fn={l(vi)}Fn={l(vi)}, Yn={yj}Yn={yj}, then
(3)
SnYn=FnSnYn=Fn
.

Lemma 2 (Positive definiteness of SnSn) Let VnVn be a Hilbert space and a(.,.):V×VRa(.,.):V×V→Ra bilinear V-elliptic form. Then the stiffness matrix SnSn , of the discrete problem (3) is positive definite.

About the error uunu−un

Lemma 3 (Orthogonality of error for elliptic problems) Let uVu∈V be the exact solution of the continuous problem (I ) and unun the exact solution of the discrete problem (3).
Then the error en=uunen=u−un, satisjies

a(uun,v)=0,vVna(u−un,v)=0,∀v∈Vn
.
Proof:Because VnVVn⊂V, then
a(uun,v)=a(u,v)a(un,v)=0.a(u−un,v)=a(u,v)−a(un,v)=0.

Remark 1 (Geometrical interpretation) If the bilinear form a(.,.)a(.,.) is symmetric, it induces an energetic inner product, then

(en,v)e=0,vVn(en,v)e=0,∀v∈Vn
,

i.e., that the error of the Galerkin approximation en=uunen=u−un is orthogonal to the Galerkin subspace VnVn in the energetic inner product. Hence the approximate solution u, E V, is an orthogonal projection of the exact solution uu onto the Galerkin subspace Vn in the energetic inner product, and thus it is the nearest element in the space VnVn to the exact solution uu in the energy norm,

uune=infvVnuve

convergence


FEA

Let ΩRdΩ⊂Rd , where dd is the spatial dimension, be an open bounded set. If the Hilbert space V consists of functions defined in ΩΩ and the Galerkin subspaces VnVn comprise piecewise-polynomial functions, the Galerkin method is called the Finite element method (FEM).

Consider the model equation

(a1u)+a0u=f,−∇(a1∇u)+a0u=f,

where fL2(Ω)f∈L2(Ω), in a bounded interval Ω=(a,b)RΩ=(a,b)⊂R, equipped with the homogeneous Dirichlet boundary conditions. At the beginning let a1a1 and a0a0 be constants and assume a simple load function of the form f(x)=1f(x)=1.

The Galerkin procedure assumes a sequence of finite-dimensional subspaces

V1V2VV1⊂V2⊂…⊂V

Consider a partition

a=x(n)0<x(n)1<<x(n)Mn=ba=x0(n)<x1(n)<…<xMn(n)=b

and define the finite element mesh
\mathcal {T}_n=\{K_1^{(n),K_2^{(n),\ldots,K_{M_n}^{(n)\}\mathcal {T}_n=\{K_1^{(n),K_2^{(n),\ldots,K_{M_n}^{(n)\}

The open intervals

K_i^{(n)=(x_{i-1}^{(n)},x_i^{(n)})K_i^{(n)=(x_{i-1}^{(n)},x_i^{(n)})
are called finite elements, and the value
h(n)=max(x(n)ix(n)i1)h(n)=max(xi(n)−xi−1(n))

is said to be the mesh diameter.

The piecewise linear basis functions vjvj, satisfy vj(xi)=δijvj(xi)=δij.

Then by (3), we can get unun.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值