C++ STL 适配器

系列文章目录

模板特例化,偏特化,左右值引用 https://blog.youkuaiyun.com/surfaceyan/article/details/126794013
C++ STL 关联容器 https://blog.youkuaiyun.com/surfaceyan/article/details/127414434
C++ STL 序列式容器(二) https://blog.youkuaiyun.com/surfaceyan/article/details/127083966
C++ STL 序列式容器(一) https://blog.youkuaiyun.com/surfaceyan/article/details/126860166
C++STL迭代器iterator设计 https://blog.youkuaiyun.com/surfaceyan/article/details/126772555
C++11 标准库头文件模拟实现,无锁STL https://blog.youkuaiyun.com/surfaceyan/article/details/126772555



前言

适配器(adapters)在STL组件的灵活组合运用上扮演者重要角色。Adapter这个概念源于23个设计模式中的一个:将一个class的接口转换为以一个class接口,使原本因接口不兼容而不能合作的classes可以一起运作。

实际上就是在原有的接口上再套一层接口
或许叫接口适配器或者接口层也可


概念分类

改变函数对象接口的称为function adapter,改变容器接口的称为 container adapter, 改变迭代器接口的称为 iterator adapter。

queue和stack就是容器适配器。

容器适配器和迭代器适配器

#include <iterator>
#include <deque>
#include <algorithm>
#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
    ostream_iterator<int> outite(cout, " ");
    int ia[] = {0,1,2,3,4,5};
    deque<int> id(ia, ia+6);
    copy(id.begin(), id.end(), outite);
    cout << endl;
    
    copy(ia+1, ia+2, front_inserter(id));
    copy(ia+3, ia+4, back_inserter(id));
    copy(id.begin(), id.end(), outite);
    cout << endl;

    deque<int>::iterator ite = find(id.begin(), id.end(), 5);
    copy(ia+0, ia+3, inserter(id, ite));
    copy(id.begin(), id.end(), outite);
    cout << endl;

    copy(id.rbegin(), id.rend(), outite);
    cout << endl;

    istream_iterator<int> inite(cin), eos;  // end-of-stream
    copy(inite, eos, inserter(id, id.begin()));

    copy(id.begin(), id.end(), outite);
    cout << endl;
}

应用于函数的适配器
所有期望获取适配能力的组件,本事必须是可适配的,也就是说,一元仿函数必须继承自 unary_function,二元仿函数必须继承自 binary_function ,成员函数必须以mem_fun处理过,一般函数必须以 ptr_fun 处理过,一个未经ptr_fun处理的一般函数,虽然也可以函数指针的形式传递STL算法使用,却无法有任何适配能力

void print(int i)
{
    cout << i << ' ';
}
class Int
{
private:
    int m_i;
public:
    explicit Int(int i) : m_i(i) {}
    ~Int() {}
    void print1() const 
    {
        cout << '[' << m_i << ']';
    }
};

template<class Arg, class Result>
struct unary_function 
{
  typedef Arg     argument_type;
  typedef Result    result_type;
};

template <class Arg1, class Arg2, class Result>
struct binary_function
{
  typedef Arg1   first_argument_type;
  typedef Arg2  second_argument_type;
  typedef Result         result_type;
};

    stringstream scout;
    ostream_iterator<int> outite(scout, " ");
    int ia[6] = {2, 21, 12, 7, 19, 23};
    vector<int> iv(ia, ia+6);
    cout << count_if(iv.begin(), iv.end(), [](int a)->bool {return a>=12;});
    cout << endl;

    transform(iv.begin(), iv.end(), outite, [](int a)->int {return (a+2)*3;});
    cout << scout.str() << endl;

    copy(iv.begin(), iv.end(), outite);
    cout << scout.str() << endl;

    for_each(iv.begin(), iv.end(), print);
    cout << endl;

    for_each(iv.begin(), iv.end(), ptr_fun(print));
    cout << endl;

    for_each(iv.begin(), iv.end(), bind(print, placeholders::_1));
    cout << endl; 

    Int t1(3), t2(7), t3(20), t4(14), t5(68);
    vector<Int> Iv;
    Iv.push_back(t1);
    Iv.push_back(t2);
    Iv.push_back(t3);
    Iv.push_back(t4);
    Iv.push_back(t5);
    for_each(Iv.begin(), Iv.end(), mem_fun_ref(&Int::print1));  // 私有成员函数必须用指针
    cout << endl;

    for_each(Iv.begin(), Iv.end(), bind(&Int::print1, placeholders::_1));
    cout << endl;

其中std::bind是更易于使用更通用的方法,用它!

容器适配器

template<typename T, typename Sequence = deque<T>>
class stack{
protected:
  Sequence c;
  ...
};

迭代器适配器

由用户指定一个容器,在调用 迭代器适配器 时调用指定容器的对应方法

1. insert iterators

可细分为back insert iterator, front insert iterator和insert iterator,分别将对应类型的“指针解引用并赋值”(*p = value)操作修改为对应容器的方法

template<class Container>
class back_insert_iterator
{
protected:
    Container* container;
public:
    typedef std::output_iterator_tag iterator_category;
    typedef void                       value_type;
    typedef void                  difference_type;
    typedef void                          pointer;
    typedef void                        reference;

    explicit back_insert_iterator(Container& x) : container(&x) {};
    back_insert_iterator& operator=(const typename Container::value_type& value)
    {
        container->push_back(value);
        return *this;
    }
    back_insert_iterator& operator*() {return *this;}
    back_insert_iterator& operator++() {return *this;}
    back_insert_iterator& operator++(int) {return *this;}
};
template <class Container>
class front_insert_iterator
{
protected:
    Container* container;
public:
    typedef std::output_iterator_tag iterator_category;
    typedef void                       value_type;
    typedef void                  difference_type;
    typedef void                          pointer;
    typedef void                        reference;

    explicit front_insert_iterator(Container& c) : container(&c) {}
    front_insert_iterator& operator=(const typename Container::value_type& v)
    {
        container->push_front(v);
        return *this;
    }
    front_insert_iterator& operator*() {return *this;}
    front_insert_iterator& operator++() {return *this;}
    front_insert_iterator& operator++(int) {return *this;}
};
template <class Container>
class insert_iterator
{
protected:
    Container* container;
    typename Container::iterator iter;
public:
    typedef std::output_iterator_tag iterator_category;
    typedef void                       value_type;
    typedef void                  difference_type;
    typedef void                          pointer;
    typedef void                        reference;

    explicit insert_iterator(Container& c, typename Container::iterator i) : container(&c), iter(i) {}
    insert_iterator& operator=(const typename Container::value_type& v)
    {
        iter = container->insert(iter, v);
        ++iter;
        return *this;
    }
    insert_iterator& operator*() {return *this;}
    insert_iterator& operator++() {return *this;}
    insert_iterator& operator++(int) {return *this;}
};


template <class Container>
inline back_insert_iterator<Container> back_inserter(Container& x)
{
    return back_insert_iterator<Container>(x);
}
template <class Container>
inline front_insert_iterator<Container> front_inserter(Container& x)
{
    return front_insert_iterator<Container>(x);
}
template <class Container, class Iterator>
inline insert_iterator<Container> inserter(Container& x, Iterator i)
{
    typedef typename Container::iterator iter;
    return insert_iterator<Container>(x, iter(i));
}

int main()
{
    std::deque<int> v{1,2,3};
    auto bins = ::front_inserter(v);

    *bins = 4;
    *bins = 6;

    std::ostream_iterator<int> outite(std::cout, " ");
    std::copy(v.begin(), v.end(), outite); std::cout << std::endl;
}

2. reverse iterators

和reverse_iterator迭代器相关,将移动操作倒转
copy(v.rbegin(), v.rend(), ite)看似简单,实则暗藏玄机

typedef reverse_iterator<iterator> reverse_iterator;
reverse_iterator rbegin() {return reverse_iterator(end());}
reverse_iterator rend() {return reverse_iterator(begin());}

在这里插入图片描述


template <class Iterator>
class reverse_iterator
{
protected:
    Iterator current;  // 记录对应之正向迭代器
public:
    typedef typename std::iterator_traits<Iterator>::iterator_category  iterator_category;
    typedef typename std::iterator_traits<Iterator>::value_type                value_type;
    typedef typename std::iterator_traits<Iterator>::difference_type      difference_type;
    typedef typename std::iterator_traits<Iterator>::pointer                      pointer;
    typedef typename std::iterator_traits<Iterator>::reference                  reference;
    typedef Iterator          iterator_type;
    typedef reverse_iterator<Iterator> self;

    reverse_iterator() {}
    explicit reverse_iterator(iterator_type x) : current(x) {}
    reverse_iterator(const self& x): current(x.current) {}
    iterator_type base() const {return current;}
    reference operator*() const
    {
        Iterator tmp = current;
        return *--tmp;  // key point
    }
    pointer operator->() const 
    {
        return &(operator*());
    }
    self& operator++()
    {
        --current;
        return *this;
    }
    self operator++(int)
    {
        self tmp = *this;
        --current;
        return tmp;
    }
    self& operator--()
    {
        ++current;
        return *this;
    }
    self operator--(int)
    {
        self tmp = *this;
        ++current;
        return tmp;
    }
    self operator+(difference_type n) const
    {
        return self(current - n);
    }
    self& operator+=(difference_type n)
    {
        current -= n;
        return *this;
    }
    self operator-(difference_type n) const
    {
        return self(current + n);
    }
    self& operator-=(difference_type n)
    {
        current += n;
        return *this;
    }
    difference_type operator-(const self& second) const
    {
        return second.current - current;
    }
    reference operator[](difference_type n) const 
    {
        return *(*this+n);
    }
};


int main()
{
    std::deque<int> v{1,2,3};
    ::reverse_iterator<std::deque<int>::iterator> rbegin(v.end()), rend(v.begin());


    std::ostream_iterator<int> outite(std::cout, " ");
    // copy到outite迭代器所指的位置
    std::copy(rbegin, rend, outite); std::cout << std::endl;
}

3. stream iterators

就是将迭代器绑定到一个stream对象身上。绑定到istream(std::cin)身上叫istream_iterator,拥有输入能力;绑定到ostream(std::cout)身上的叫ostream_iterator, 拥有输出能力。
所谓绑定是指,在iterator内部维护一个stream成员,客户端对该iterator的所有操作都转换成该stream成员的操作。

template <typename T, typename Distance = std::ptrdiff_t>
class istream_iterator
{
friend bool operator==(const istream_iterator<T, Distance>& x, const istream_iterator<T, Distance>& y);

protected:
    std::istream* stream;
    T value;
    bool end_marker;
    void read()
    {
        end_marker = (*stream) ? true : false;
        if (end_marker) *stream >> value;
        end_marker = (*stream) ? true : false;
    }
public:
    typedef std::input_iterator_tag  iterator_category;
    typedef T                               value_type;
    typedef Distance                   difference_type;
    typedef const T*                           pointer;
    typedef const T&                         reference;

    istream_iterator() : stream(&std::cin), end_marker(false) {}
    explicit istream_iterator(std::istream& s) : stream(&s) { read(); }
    reference operator*() const { return value; }
    pointer operator->() const { return &(operator*()); }
    istream_iterator& operator++()
    {
        read();
        return *this;
    }
    istream_iterator operator++(int)
    {
        istream_iterator<T, Distance> tmp = *this;
        read();
        return tmp;
    }
}; 
template <typename T>
class ostream_iterator
{
protected:
    std::ostream* stream;
    const char* string;
public:
    typedef std::output_iterator_tag  iterator_category;
    typedef void                             value_type;
    typedef void                        difference_type;
    typedef void                                pointer;
    typedef void                              reference;

    explicit ostream_iterator(std::ostream& s) : stream(&s), string(0) {}
    ostream_iterator(std::ostream& s, const char* c) : stream(&s), string(c) {}
    ostream_iterator operator=(const T& value)
    {
        *stream << value;
        if (string) *stream << string;
        return *this;
    }
    ostream_iterator& operator*() {return *this;}
    ostream_iterator& operator++() {return *this;}
    ostream_iterator& operator++(int) {return *this;}
}; 

以上两个迭代器在应用上非常重要,说明了如何为自己量身定制一个迭代器。可以完成一个绑定到 Internet Explorer 身上的迭代器,也可以完成一个绑定到磁盘目录上的迭代器······

function adapters

std::bind

4. 用于函数指针:ptr_fun

@deprecated Deprecated in C++11, no longer in the standard since C++17.

5. 用于成员函数指针: mem_fun, mem_fun_ref

在这里插入图片描述
@deprecated Deprecated in C++11, no longer in the standard since C++17. Use mem_fn instead.

std::mem_fn


总结

algorithm里存放各种算法如accumulate,sort等
functional里存各种xx函数如std::move, less, greater等

适配器一般要和泛型算法配合使用方可体现其强大之处

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值