Minimum Number of Arrows to Burst Balloons

探讨如何利用贪婪算法确定最少射箭次数以爆破所有位于二维空间中的圆形气球,通过排序和遍历找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it's horizontal, y-coordinates don't matter and hence the x-coordinates of start and end of the diameter suffice. Start is always smaller than end. There will be at most 104 balloons.

An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xend bursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps travelling up infinitely. The problem is to find the minimum number of arrows that must be shot to burst all balloons.

Example:

Input:
[[10,16], [2,8], [1,6], [7,12]]

Output:
2

Explanation:
One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons).

题目大意:

在二维空间中有许多的圆形气球。对于每个气球,给出了该气球的在横坐标上的起始位置和终止位置,而且起始位置始终小于终止位置。现在开始射箭,箭可以在横坐标不同点上垂直向上发射。如果箭的起始点为x,如果x在气球的起始位置和终止位置之间,那么气球就会爆炸。现在有不限数量的箭可以发射。假设一直箭每次可以向上发射到无穷远处。现在的问题是,求出可以让所有气球爆炸的最少箭数。

解题思路:

     这道题是典型的用贪婪算法来做的题,因为局部最优解就等于全局最优解,我们首先给区间排序,我们不用特意去写排序比较函数,因为默认的对于pair的排序,就是按第一个数字升序排列,如果第一个数字相同,那么按第二个数字升序排列,这个就是我们需要的顺序,所以直接用即可。然后我们将res初始化为1,因为气球数量不为0,所以需要先射出一支,然后这一箭能覆盖的最远位置就是第一个气球的结束点,用变量end来表示。然后我们开始遍历剩下的气球,如果当前气球的开始点小于等于end,说明跟之前的气球有重合,之前那一箭也可以照顾到当前的气球,此时我们要更新end的位置,end更新为两个气球结束点之间较小的那个,这也是当前气球和之前气球的重合点,然后继续看后面的气球;如果某个气球的起始点大于end了,说明前面的箭无法覆盖到当前的气球,那么就得再射出一支,既然又射出去了一支,那么我们此时就要把end设为当前气球的结束点了,这样贪婪算法遍历结束后就能得到最少的箭数了。


代码如下:

class Solution {
public:
    int findMinArrowShots(vector<pair<int, int>>& points) {
        if (points.empty()) return 0;
        sort(points.begin(), points.end());
        int res = 1, end = points[0].second;
        for (int i = 1; i < points.size(); ++i) {
            if (points[i].first <= end) {
                end = min(end, points[i].second);
            } else {
                ++res;
                end = points[i].second;
            }
        }
        return res;
    }
};



内容概要:该论文研究增程式电动汽车(REEV)的能量管理策略,针对现有优化策略实时性差的问题,提出基于工况识别的自适应等效燃油消耗最小策略(A-ECMS)。首先建立整车Simulink模型和基于规则的策略;然后研究动态规划(DP)算法和等效燃油最小策略;接着通过聚类分析将道路工况分为四类,并设计工况识别算法;最后开发基于工况识别的A-ECMS,通过高德地图预判工况类型并自适应调整SOC分配。仿真显示该策略比规则策略节油8%,比简单SOC规划策略节油2%,并通过硬件在环实验验证了实时可行性。 适合人群:具备一定编程基础,特别是对电动汽车能量管理策略有兴趣的研发人员和技术爱好者。 使用场景及目标:①理解增程式电动汽车能量管理策略的基本原理;②掌握动态规划算法和等效燃油消耗最小策略的应用;③学习工况识别算法的设计和实现;④了解基于工况识别的A-ECMS策略的具体实现及其优化效果。 其他说明:此资源不仅提供了详细的MATLAB/Simulink代码实现,还深入分析了各算法的原理和应用场景,适合用于学术研究和工业实践。在学习过程中,建议结合代码调试和实际数据进行实践,以便更好地理解策略的优化效果。此外,论文还探讨了未来的研究方向,如深度学习替代聚类、多目标优化以及V2X集成等,为后续研究提供了思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值