在stable diffussion中完美修复AI图片

无论您的提示和模型有多好,一次性获得完美图像的情况很少见。

修复小缺陷的不可或缺的方法是图像修复(inpainting)。在这篇文章中,我将通过一些基本示例来介绍如何使用图像修复来修复缺陷。

需要的软件

我们将使用 AUTOMATIC1111 Stable Diffusion GUI 来创建图像。

基本的图像修复设置

在这一部分,我将逐步展示如何使用图像修复来修复小缺陷。

我们先使用下面的提示来创建一张图片:

正向提示词:

masterpiece,best quality,masterpiece,best quality,official art,extremely detailed CG unity 8k wallpaper,a beautiful woman,full body,

负向提示词:

lowers,monochrome,grayscales,skin spots,acnes,skin blemishes,age spot,6 more fingers on one hand,deformity,bad legs,error legs,bad feet,malformed limbs,extra limbs,

我们可以得到下面的图片:

image-20240703201556791

虽然这张图片整体上看起来还不错,但是还是有一些问题。

比如脸部和手部。

那么接下来我们怎么修复呢?

选择对应的模型

如果你经常浏览C站的话,你可以看到对于有些模型会有一种专门给重绘使用的模型,这种模型是专门为图像修复而训练的Stable Diffusion模型。

如果您想获得最佳结果,可以使用它。但通常,使用生成图像的相同模型进行图像修复也是可以的。

我们把对应的模型下载下来,并将其放入文件夹中:

stable-diffusion-webui/models/Stable-diffusion

在AUTOMATIC1111中,点击左上角检查点选择下拉框旁边的刷新图标,就可以看到你刚刚下载的模型了。

创建图像修复遮罩

在AUTOMATIC1111 GUI中,选择img2img标签并选择Inpaint子标签。将图像上传到图像修复画布。

或者在txt2img标签中选择send img to inpaint。

我们将同时修复手部和脸部。使用画笔工具创建一个遮罩。这是您希望Stable Diffusion重新生成图像的区域。

image-20240703202118650

图像修复的设置

图像大小

需要调整图像大小以与原始图像相同。(在这种情况下为768 x 512)。

image-20240703202219551

面部修复

如果您正在修复面部,可以打开restore faces。选择对应的face restoration model:CodeFormer。

image-20240703202529557

有朋友会问了,为什么我的页面上面没有restore faces选项呢?

如果你没有这个选项的话,需要到setttings里面的user interface添加下面的两个设置:

image-20240703202501548

请注意,此选项可能会生成不自然的外观。它也可能生成与模型风格不一致的内容。

遮罩内容

下一个重要设置是Masked Content

如果您希望结果由原始内容的颜色和形状引导,请选择original

original通常用于面部图像修复,因为一般形状和解剖结构是正确的。我们只是希望它看起来有点不同。

在大多数情况下,您将使用original并更改去噪强度以实现不同的效果。

如果您想要从原始图像中完全重新生成某些内容,例如移除一个肢体或隐藏一只手,可以使用latent noiselatent nothing

这些选项使用与原始图像不同的内容初始化遮罩区域。它将产生完全不同的东西。

去噪强度

去噪强度控制与原始图像相比将进行多少变化。当您将其设置为0时,什么都不会改变。当您将其设置为1时,您将获得一个不相关的图像。0.75通常是一个很好的起点。如果您想要更少的变化,请降低它。

批量大小

确保一次生成一些图像,以便您可以选择最好的。将种子设置为-1,以便每个图像都不同。

图像修复结果

以下是一些修复后的图像。

image-20240703204340543

可以看到第四张还是不错的,但是还不够完美。所以我们可以考虑再来一轮修复。

再进行一轮图像修复

把上面生成的最后一张图片再发到inpait中再次修复。

我们可以得到下面的结果:

image-20240703204936210

图像修复是一个迭代过程。您可以根据需要多次应用它来细化图像。

如果一次不行的话,我们可以考虑多来几次。

添加新对象

有时,您可能希望在图像中添加一些新东西。

让我们尝试在图片中添加一把剑。

首先,将图像上传到图像修复画布并在手部的位置添加遮罩。

在原始提示的开头添加“holding a sword”。图像修复的提示是

(holding a sword:1.5),masterpiece,best quality,masterpiece,best quality,official art,extremely detailed CG unity 8k wallpaper,a beautiful woman,full body,

向原始提示中添加新对象确保风格一致。您可以调整关键词权重(上面的1.5)以使宝剑显示。

遮罩内容设置为潜在噪声

调整去噪强度CFG比例以微调修复后的图像。

经过一些实验,我们的任务完成了:

image-20240703210315083

图像修复参数的解释

去噪强度

去噪强度控制最终图像和原始内容的相似度。将其设置为0则什么都不会改变。将其设置为1,则您会得到一个不相关的图像。

如果您想要小的变化,请设置为低值;如果您想要大的变化,请设置为高值。

CFG scale

类似于在文本到图像中的使用,CFG scale是一个参数,用于控制模型和你的提示词的关联度。

1 – 大致忽略您的提示。

3 – 更有创造力。

7 – 在遵循提示和自由之间取得良好的平衡。

15 – 更多地遵循提示。

30 – 严格遵循提示。

遮罩内容

遮罩内容控制遮罩区域是如何初始化的。

fill:用原始图像的高度模糊版本初始化。

Original:未修改。

latent noise:遮罩区域用填充初始化,并在潜在空间中添加随机噪声。

latent nothing:像潜在噪声,只是没有在潜在空间中添加噪声。

图像修复的技巧

成功的图像修复需要耐心和技巧。以下是使用图像修复的一些要点:

  • 一次修复一个小区域。
  • 尝试不同的遮罩内容以查看哪个最有效。
  • 可以多次尝试修复。
  • 如果在AUTOMATIC1111的设置中什么都不起作用,请使用像Photoshop或GIMP这样的图像编辑软件,用您想要的大致形状和颜色绘制感兴趣的区域。上传那张图像并用原始内容进行图像修复。

点我查看更多精彩内容:www.flydean.com

### Stable Diffusion 文本到图像生成概述 Stable Diffusion 是一种强大的文本到图像 (Text-to-image, T2I) 生成模型,能够依据给定的文字描述创建高质量的图片[^1]。此模型基于深度学习技术,在训练过程中学会了如何将语义信息映射至视觉表示。 #### 工作原理 核心在于扩散模型架构,它通过逐步向随机噪声中加入细节来构建最终图像。具体来说,Stable Diffusion 使用类似于 VQ-GAN 的预处理流程,先将原始高分辨率(如512x512像素)的图像压缩成较低维度的空间(例如64x64),从而简化计算复杂度并提高效率[^3]。对于条件控制部分,则采用专门设计的ControlNet模块负责提取输入条件下的特征图谱,并将其转换为目标尺寸用于指导后续合成过程。 #### 实现代码示例 下面给出一段简单的 Python 脚本来展示如何调用 Hugging Face 提供的 `diffusers` 库实现基本的文字转图片功能: ```python from diffusers import StableDiffusionPipeline import torch model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device) prompt = "a photograph of an astronaut riding a horse on mars." image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` 这段脚本会下载指定版本的 Stable Diffusion 预训练权重文件,并根据所提供的提示词生成一张描绘宇航员骑马漫步火星表面的艺术风格照片保存下来。 #### PanFusion 扩展应用 值得注意的是,针对特定场景比如全景观光图制作方面存在的难题——即难以获得足够的配对样本以及不同视角间存在显著差异等问题,研究者们开发出了名为 PanFusion 的改进方案。该方法引入了双重路径结构配合特殊设计的跨视点注意机制(EPPA),有效解决了上述提到的技术瓶颈,使得即使是在缺乏充分标注资料的情况下也能产出令人满意的360°环绕效果作品[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

flydean程序那些事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值