Subsets

class Solution {
public:
    vector<vector<int> > subsets(vector<int> &S) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        sort(S.begin(), S.end());
        vector<vector<int> > res(1);
        for (int i=0; i<S.size(); i++) {
            int j=res.size()-1;
            for (; j>=0; j--) {
                res.push_back(res[j]);
                res[j].push_back(S[i]);
            }
        }
        return res;
    }
};

dfs:

class Solution {
public:
    void dfs(vector<int> &S, int d, vector<vector<int> > &res, vector<int> &cur) {
        if (d==S.size()) return;
        for (int i=d; i<S.size(); i++) {
            cur.push_back(S[i]);
            res.push_back(cur);
            dfs(S,i+1,res,cur);
            cur.pop_back();
        }
    }
    vector<vector<int> > subsets(vector<int> &S) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.
        vector<vector<int> > res;
        if (S.size()==0) return res;
        vector<int> cur;
        res.push_back(cur);
        sort(S.begin(), S.end());
        dfs(S, 0, res, cur);
        return res;
    }
};


II

class Solution {
public:
    vector<vector<int> > subsetsWithDup(vector<int> &S) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        sort(S.begin(), S.end());
        vector<vector<int> > res(1);
        int i=0,j=0;
        for (;i<S.size(); i++) {
            int len=res.size();
            for(;j<len; j++) {
                res.push_back(res[j]);
                res.back().push_back(S[i]);
            }
            if (S[i]==S[i+1]) {
                j=len;
            }else {
                j=0;
            }
        }
        return res;
    }
};

dfs:

class Solution {
public:
    void dfs(vector<int> &S, int d, vector<vector<int>> &res, vector<int> &cur) {
        if (d==S.size()) return;
        for (int i=d; i<S.size(); i++) {
            if (i>d && S[i]==S[i-1]) continue;
            cur.push_back(S[i]);
            res.push_back(cur);
            dfs(S,i+1,res,cur);
            cur.pop_back();
        }
    } 
    vector<vector<int> > subsetsWithDup(vector<int> &S) {
        vector<vector<int> > res;
        if (S.size()==0) return res;
        vector<int> cur;
        res.push_back(cur);
        sort(S.begin(),S.end());
        dfs(S,0,res,cur);
        return res;
    }
};


【SCI级别】多策略改进鲸鱼优化算法(HHWOA)和鲸鱼优化算法(WOA)在CEC2017测试集函数F1-F30寻优对比内容概要:本文档主要介绍了一项关于多策略改进鲸鱼优化算法(HHWOA)与标准鲸鱼优化算法(WOA)在CEC2017测试集函数F1-F30上进行寻优性能对比的研究,属于智能优化算法领域的高水平科研工作。文中通过Matlab代码实现算法仿真,重点展示了HHWOA在收敛速度、寻优精度和稳定性方面的优势,体现了多策略改进的有效性。该研究适用于复杂优化问题求解,尤其在工程优化、参数辨识、机器学习超参数调优等领域具有应用潜力。; 适合人群:具备一定算法基础和Matlab编程能力的研究生、科研人员及从事智能优化算法开发与应用的工程技术人员,尤其适合致力于SCI论文写作与算法创新的研究者。; 使用场景及目标:①用于理解鲸鱼优化算法的基本原理及多策略改进思路(如种群初始化、非线性收敛因子、精英反向学习等);②为智能优化算法的性能测试与对比实验提供CEC2017标准测试平台的实现参考;③支撑学术研究中的算法创新与论文复现工作。; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注HHWOA的改进策略模块与WOA的差异,通过重复实验验证算法性能,并可将其思想迁移至其他优化算法的改进中,提升科研创新能力。
<think>嗯,用户现在问的是“new_subsets怎么弄”,看起来他们在之前的递归求子集的代码中对`new_subsets`的生成过程不太明白。首先,我需要回顾之前的对话,确保自己正确理解上下文。 用户之前询问如何用递归方法求集合的子集,我给出了一个Python代码示例,其中`new_subsets`是通过遍历已有的`rest_subsets`并将当前元素添加到每个子集中生成的。现在用户可能对这部分的具体实现有疑问,或者不理解`new_subsets`是如何形成的。 接下来,我需要分析用户的问题。他们可能不太理解列表推导式的作用,或者想知道为什么这样处理就能生成包含当前元素的子集。也有可能对递归过程中`rest_subsets`和`new_subsets`的关系感到困惑。 考虑到用户可能是编程新手,需要将问题拆解得更详细。我应该从递归的基本思路开始,逐步解释每一步发生了什么,特别是`new_subsets`的生成过程。可能需要用更简单的例子来演示,比如用一个小集合如[1,2]来逐步展示递归调用栈和变量的变化。 此外,用户可能对代码中的列表操作不太熟悉,比如`[current] + subset`是如何工作的。需要解释Python中列表拼接的机制,以及这里的`subset`指的是`rest_subsets`中的每一个元素,即已有的子集。 还要注意用户可能的误区,比如认为`new_subsets`是直接添加当前元素到原集合,而实际上它是将当前元素添加到每一个已有的子集中,从而生成新的子集。需要强调这一步是递归生成子集的关键,即每次递归都处理剩余元素,然后将当前元素与之前的子集组合。 最后,要确保回答结构清晰,分步骤说明,并结合示例代码和具体的例子来验证每个步骤的正确性,帮助用户建立直观的理解。</think>好的!我来详细解释 `new_subsets` 的生成过程,以及它在递归生成子集中的核心作用。 --- ### **关键概念** - **目标**:递归生成子集时,每一步需要将当前元素与已生成的子集组合,形成包含当前元素的新子集。 - **核心操作**:将当前元素添加到所有已存在的子集中,生成一批新的子集。 --- ### **具体步骤解释** 假设当前处理的元素是 `current`,已递归生成的子集列表是 `rest_subsets`(即不包含 `current` 的所有子集)。那么: 1. **遍历已有子集**:对 `rest_subsets` 中的每一个子集(例如 `subset = []` 或 `subset = [2]`)。 2. **添加当前元素**:将 `current` 插入到每个子集的头部(或尾部),生成新的子集。 3. **收集所有新子集**:将这些新生成的子集组合成 `new_subsets`。 **代码实现**: ```python current = nums[0] new_subsets = [ [current] + subset for subset in rest_subsets ] ``` --- ### **示例演示** 以集合 `[1, 2, 3]` 为例,递归到最深层时(处理最后一个元素 `3`): - `rest_subsets` 是空集的子集:`[[]]` - `current = 3` - `new_subsets = [[3] + subset for subset in [[]]] → [[3]]` **合并结果**:`rest_subsets (不包含3) + new_subsets (包含3)` → `[[], [3]]` --- #### **递归向上返回的过程** 假设递归返回到处理 `current = 2`: - `rest_subsets` 是 `[[], [3]]`(不包含2的子集) - `new_subsets` 是 `[[2] + [], [2] + [3]] → [[2], [2, 3]]` - 合并结果:`[[], [3], [2], [2, 3]]` 继续返回到处理 `current = 1`: - `rest_subsets` 是 `[[], [3], [2], [2, 3]]`(不包含1的子集) - `new_subsets` 是 `[[1] + s for s in rest_subsets] → [[1], [1,3], [1,2], [1,2,3]]` - 合并结果:`[[], [3], [2], [2,3], [1], [1,3], [1,2], [1,2,3]]` --- ### **为什么这样设计?** - **递归逻辑**:每一步只处理当前元素,其余交给递归解决。 - **数学本质**:若已知集合 $S' = S \setminus \{a\}$ 的所有子集,则 $S$ 的子集 = $S'$ 的子集(不包含 $a$) + 每个 $S'$ 的子集添加 $a$ 后的结果(包含 $a$)。 --- ### **常见误区** 1. **直接操作原集合**:错误地修改原集合会导致重复或遗漏。递归应始终处理剩余元素。 2. **浅拷贝问题**:如果直接引用列表(如 `subset.append(current)`),会导致所有子集共享同一内存。必须创建新列表(例如 `[current] + subset`)。 --- ### **总结** `new_subsets` 的作用是:**将当前元素添加到所有已有子集中,生成包含当前元素的新子集**。它是递归过程中“扩展子集”的核心步骤,最终与不包含当前元素的子集合并,形成完整的子集集合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值