Subsets

class Solution {
public:
    vector<vector<int> > subsets(vector<int> &S) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        sort(S.begin(), S.end());
        vector<vector<int> > res(1);
        for (int i=0; i<S.size(); i++) {
            int j=res.size()-1;
            for (; j>=0; j--) {
                res.push_back(res[j]);
                res[j].push_back(S[i]);
            }
        }
        return res;
    }
};

dfs:

class Solution {
public:
    void dfs(vector<int> &S, int d, vector<vector<int> > &res, vector<int> &cur) {
        if (d==S.size()) return;
        for (int i=d; i<S.size(); i++) {
            cur.push_back(S[i]);
            res.push_back(cur);
            dfs(S,i+1,res,cur);
            cur.pop_back();
        }
    }
    vector<vector<int> > subsets(vector<int> &S) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.
        vector<vector<int> > res;
        if (S.size()==0) return res;
        vector<int> cur;
        res.push_back(cur);
        sort(S.begin(), S.end());
        dfs(S, 0, res, cur);
        return res;
    }
};


II

class Solution {
public:
    vector<vector<int> > subsetsWithDup(vector<int> &S) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        sort(S.begin(), S.end());
        vector<vector<int> > res(1);
        int i=0,j=0;
        for (;i<S.size(); i++) {
            int len=res.size();
            for(;j<len; j++) {
                res.push_back(res[j]);
                res.back().push_back(S[i]);
            }
            if (S[i]==S[i+1]) {
                j=len;
            }else {
                j=0;
            }
        }
        return res;
    }
};

dfs:

class Solution {
public:
    void dfs(vector<int> &S, int d, vector<vector<int>> &res, vector<int> &cur) {
        if (d==S.size()) return;
        for (int i=d; i<S.size(); i++) {
            if (i>d && S[i]==S[i-1]) continue;
            cur.push_back(S[i]);
            res.push_back(cur);
            dfs(S,i+1,res,cur);
            cur.pop_back();
        }
    } 
    vector<vector<int> > subsetsWithDup(vector<int> &S) {
        vector<vector<int> > res;
        if (S.size()==0) return res;
        vector<int> cur;
        res.push_back(cur);
        sort(S.begin(),S.end());
        dfs(S,0,res,cur);
        return res;
    }
};


源码地址: https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
《基于STM32微控制器集成温湿度监测与显示功能的系统实现方案》 本方案提供了一套完整的嵌入式系统设计参考,实现了环境参数的实时采集、可视化呈现与异常状态提示。系统核心采用意法半导体公司生产的STM32系列32位微控制器作为主控单元,负责协调各外设模块的工作流程。 系统通过数字式温湿度复合传感器周期性获取环境参数,该传感器采用单总线通信协议,具有响应迅速、数据可靠的特点。采集到的数值信息通过两种途径进行处理:首先,数据被传输至有机发光二极管显示屏进行实时图形化显示,该显示屏支持高对比度输出,能够在不同光照条件下清晰呈现当前温度与湿度数值;其次,所有采集数据同时通过通用异步收发传输接口输出,可供上位机软件进行记录与分析。 当监测参数超出预设安全范围时,系统会启动声学警示装置,该装置可发出不同频率的提示音,以区分温度异常或湿度异常状态。所有功能模块的驱动代码均采用模块化设计原则编写,包含完整的硬件抽象层接口定义、传感器数据解析算法、显示缓冲区管理机制以及串口通信协议实现。 本参考实现重点阐述了多外设协同工作的时序控制策略、低功耗数据采集模式的应用方法,以及确保系统稳定性的错误处理机制。代码库中包含了详细的初始化配置流程、中断服务程序设计和各功能模块的应用程序接口说明,为嵌入式环境监测系统的开发提供了可靠的技术实现范例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>嗯,用户现在问的是“new_subsets怎么弄”,看起来他们在之前的递归求子集的代码中对`new_subsets`的生成过程不太明白。首先,我需要回顾之前的对话,确保自己正确理解上下文。 用户之前询问如何用递归方法求集合的子集,我给出了一个Python代码示例,其中`new_subsets`是通过遍历已有的`rest_subsets`并将当前元素添加到每个子集中生成的。现在用户可能对这部分的具体实现有疑问,或者不理解`new_subsets`是如何形成的。 接下来,我需要分析用户的问题。他们可能不太理解列表推导式的作用,或者想知道为什么这样处理就能生成包含当前元素的子集。也有可能对递归过程中`rest_subsets`和`new_subsets`的关系感到困惑。 考虑到用户可能是编程新手,需要将问题拆解得更详细。我应该从递归的基本思路开始,逐步解释每一步发生了什么,特别是`new_subsets`的生成过程。可能需要用更简单的例子来演示,比如用一个小集合如[1,2]来逐步展示递归调用栈和变量的变化。 此外,用户可能对代码中的列表操作不太熟悉,比如`[current] + subset`是如何工作的。需要解释Python中列表拼接的机制,以及这里的`subset`指的是`rest_subsets`中的每一个元素,即已有的子集。 还要注意用户可能的误区,比如认为`new_subsets`是直接添加当前元素到原集合,而实际上它是将当前元素添加到每一个已有的子集中,从而生成新的子集。需要强调这一步是递归生成子集的关键,即每次递归都处理剩余元素,然后将当前元素与之前的子集组合。 最后,要确保回答结构清晰,分步骤说明,并结合示例代码和具体的例子来验证每个步骤的正确性,帮助用户建立直观的理解。</think>好的!我来详细解释 `new_subsets` 的生成过程,以及它在递归生成子集中的核心作用。 --- ### **关键概念** - **目标**:递归生成子集时,每一步需要将当前元素与已生成的子集组合,形成包含当前元素的新子集。 - **核心操作**:将当前元素添加到所有已存在的子集中,生成一批新的子集。 --- ### **具体步骤解释** 假设当前处理的元素是 `current`,已递归生成的子集列表是 `rest_subsets`(即不包含 `current` 的所有子集)。那么: 1. **遍历已有子集**:对 `rest_subsets` 中的每一个子集(例如 `subset = []` 或 `subset = [2]`)。 2. **添加当前元素**:将 `current` 插入到每个子集的头部(或尾部),生成新的子集。 3. **收集所有新子集**:将这些新生成的子集组合成 `new_subsets`。 **代码实现**: ```python current = nums[0] new_subsets = [ [current] + subset for subset in rest_subsets ] ``` --- ### **示例演示** 以集合 `[1, 2, 3]` 为例,递归到最深层时(处理最后一个元素 `3`): - `rest_subsets` 是空集的子集:`[[]]` - `current = 3` - `new_subsets = [[3] + subset for subset in [[]]] → [[3]]` **合并结果**:`rest_subsets (不包含3) + new_subsets (包含3)` → `[[], [3]]` --- #### **递归向上返回的过程** 假设递归返回到处理 `current = 2`: - `rest_subsets` 是 `[[], [3]]`(不包含2的子集) - `new_subsets` 是 `[[2] + [], [2] + [3]] → [[2], [2, 3]]` - 合并结果:`[[], [3], [2], [2, 3]]` 继续返回到处理 `current = 1`: - `rest_subsets` 是 `[[], [3], [2], [2, 3]]`(不包含1的子集) - `new_subsets` 是 `[[1] + s for s in rest_subsets] → [[1], [1,3], [1,2], [1,2,3]]` - 合并结果:`[[], [3], [2], [2,3], [1], [1,3], [1,2], [1,2,3]]` --- ### **为什么这样设计?** - **递归逻辑**:每一步只处理当前元素,其余交给递归解决。 - **数学本质**:若已知集合 $S' = S \setminus \{a\}$ 的所有子集,则 $S$ 的子集 = $S'$ 的子集(不包含 $a$) + 每个 $S'$ 的子集添加 $a$ 后的结果(包含 $a$)。 --- ### **常见误区** 1. **直接操作原集合**:错误地修改原集合会导致重复或遗漏。递归应始终处理剩余元素。 2. **浅拷贝问题**:如果直接引用列表(如 `subset.append(current)`),会导致所有子集共享同一内存。必须创建新列表(例如 `[current] + subset`)。 --- ### **总结** `new_subsets` 的作用是:**将当前元素添加到所有已有子集中,生成包含当前元素的新子集**。它是递归过程中“扩展子集”的核心步骤,最终与不包含当前元素的子集合并,形成完整的子集集合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值