zookeeper一致性协议

Zookeeper的ZAB协议确保了在集群半数以下节点宕机时仍能提供服务,通过选主、数据同步和事务操作保证数据一致性。选主阶段通过投票选出ZXID最大的节点作为leader,数据同步确保所有服务器提交相同事务,事务操作类似二阶段提交,但不支持回滚。ZAB协议利用“过半”策略在可用性和一致性之间取得平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

zookeeper实现数据一致性的核心是ZAB协议(Zookeeper原子消息广播协议)。该协议需要做到以下几点:

(1)集群在半数以下节点宕机的情况下,能正常对外提供服务;

(2)客户端的写请求全部转交给leader来处理,leader需确保写变更能实时同步给所有follower及observer;

(3)leader宕机或整个集群重启时,需要确保那些已经在leader服务器上提交的事务最终被所有服务器都提交,确保丢弃那些只在leader服务器上被提出的事务,并保证集群能快速恢复到故障前的状态。

Zab协议有两种模式, 崩溃恢复(选主+数据同步)和消息广播(事务操作)。任何时候都需要保证只有一个主进程负责进行事务操作,而如果主进程崩溃了,就需要迅速选举出一个新的主进程。主进程的选举机制与事务操作机制是紧密相关的。下面详细讲解这三个场景的协议规则,从细节去探索ZAB协议的数据一致性原理。

1、选主:leader选举是zk中最重要的技术之一,也是保证分布式数据一致性的关键所在。当集群中的一台服务器处于如下两种情况之一时,就会进入leader选举阶段——服务器初始化启动、服务器运行期间无法与leader保持连接。

选举阶段,集群间互传的消息称为投票,投票Vote主要包括二个维度的信息:ID、ZXID

  • ID 被推举的leader的服务器ID,集群中的每个zk节点启动前就要配置好这个全局唯一的ID。
  • ZXID 被推举的leader的事务ID ,该值是从机器DataTree内存中取的,即事务已经在机器上被commit过了。

节点进入选举阶段后的大体执行逻辑如下:

(1)设置状态为LOOKING,初始化内部投票Vote (id,zxid) 数据至内存,并将其广播到集群其它节点。节点首次投票都是选举自己作为leader,将自身的服务ID、处理的最近一个事务请求的ZXID(ZXID是从内存数据库里取的,即该节点最近一个完成commit的事务id)及当前状态广播出去。然后进入循环等待及处理其它节点的投票信息的流程中。

(2)循环等待流程中,节点每收到一个外部的Vote信息,都需要将其与自己内存Vote数据进行PK,规则为取ZXID大的,若ZXID相等,则取ID大的那个投票。若外部投票胜选,节点需要将该选票覆盖之前的内存Vote数据,并再次广播出去;同时还要统计是否有过半的赞同者与新的内存投票数据一致,无则继续循环等待新的投票,有则需要判断leader是否在赞同者之中,在则退出循环,选举结束,根据选举结果及各自角色切换状态,leader切换成LEADING、follower切换到FOLLOWING、observer切换到OBSERVING状态。

算法细节可参照FastLeaderElection.lookForLeader(),主要有三个线程在工作:选举线程(主动调用lookForLeader方法的线程,通过阻塞队列sendqueue及recvqueue与其它两个线程协作)、WorkerReceiver线程(选票接收器,不断获取其它服务器发来的选举消息,筛选后会保存到recvqueue队列中。zk服务器启动时,开始正常工作,不停止)以及WorkerSender线程(选票发送器,会不断地从sendqueue队列中获取待发送的选票,并广播至集群)。WorkerReceiver线程一直在工作,即使当前节点处于LEADING或者FOLLOWING状态,它起到了一个过滤的作用,当前节点为LOOKING时,才会将外部投票信息转交给选举线程处理;如果当前节点处于非LOOKING状态,收到了处于LOOKING状态的节点投票数据(外部节点重启或网络抖动情况下),说明发起投票的节点数据跟集群不一致,这时,当前节点需要向集群广播出最新的内存Vote(id,zxid),落后节点收到该Vote后,会及时注册到leader上,并完成数据同步,跟上集群节奏,提供正常服务。

2、选主后的数据同步:选主算法中的zxid是从内存数据库中取的最新事务id,事务操作是分两阶段的(提出阶段和提交阶段),leader生成提议并广播给followers,收到半数以上的ACK后,再广播commit消息,同时将事务操作应用到内存中。follower收到提议后先将事务写到本地事务日志,然后反馈ACK,等接到leader的commit消息时,才会将事务操作应用到内存中。可见,选主只是选出了内存数据是最新的节点,仅仅靠这个是无法保证已经在leader服务器上提交的事务最终被所有服务器都提交。比如leader发起提议P1,并收到半数以上follower关于P1的ACK后,在广播commit消息之前宕机了,选举产生的新leader之前是follower,未收到关于P1的commit消息,内存中是没有P1的数据。而ZAB协议的设计是需要保证选主后,P1是需要应用到集群中的。这块的逻辑是通过选主后的数据同步来弥补。

选主后,节点需要切换状态,leader切换成LEADING状态后的流程如下:

(1)重新加载本地磁盘上的数据快照至内存,并从日志文件中取出快照之后的所有事务操作,逐条应用至内存,并添加到已提交事务缓存commitedProposals。这样能保证日志文件中的事务操作,必定会应用到leader的内存数据库中。

(2)获取learner发送的FOLLOWERINFO/OBSERVERINFO信息,并与自身commitedProposals比对,确定采用哪种同步方式,不同的learner可能采用不同同步方式(DIFF同步、TRUNC+DIFF同步、SNAP同步)。这里是拿learner内存中的zxid与leader内存中的commitedProposals(min、max)比对,如果zxid介于min与max之间,但又不存在于commitedProposals中时,说明该zxid对应的事务需要TRUNC回滚;如果 zxid 介于min与max之间且存在于commitedProposals中,则leader需要将zxid+1~max 间所有事务同步给learner,这些内存缺失数据,很可能是因为leader切换过程中造成commit消息丢失,learner只完成了事务日志写入,未完成提交事务,未应用到内存。

(3)leader主动向所有learner发送同步数据消息,每个learner有自己的发送队列,互不干扰。同步结束时,leader会向learner发送NEWLEADER指令,同时learner会反馈一个ACK。当leader接收到来自learner的ACK消息后,就认为当前learner已经完成了数据同步,同时进入“过半策略”等待阶段。当leader统计到收到了一半已上的ACK时,会向所有已经完成数据同步的learner发送一个UPTODATE指令,用来通知learner集群已经完成了数据同步,可以对外服务了。

细节可参照Leader.lead() 、Follower.followLeader()及LearnerHandler类。

3、事务操作:ZAB协议对于事务操作的处理是一个类似于二阶段提交过程。针对客户端的事务请求,leader服务器会为其生成对应的事务proposal,并将其发送给集群中所有follower机器,然后收集各自的选票,最后进行事务提交。流程如下图。

ZAB协议的二阶段提交过程中,移除了中断逻辑(事务回滚),所有follower服务器要么正常反馈leader提出的事务proposal,要么就抛弃leader服务器。follower收到proposal后的处理很简单,将该proposal写入到事务日志,然后立马反馈ACK给leader,也就是说如果不是网络、内存或磁盘等问题,follower肯定会写入成功,并正常反馈ACK。leader收到过半follower的ACK后,会广播commit消息给所有learner,并将事务应用到内存;learner收到commit消息后会将事务应用到内存。

ZAB协议中多次用到“过半”设计策略 ,该策略是zk在A(可用性)与C(一致性)间做的取舍,也是zk具有高容错特性的本质。相较分布式事务中的2PC(二阶段提交协议)的“全量通过”,ZAB协议可用性更高(牺牲了部分一致性),能在集群半数以下服务宕机时正常对外提供服务。

五、参考:

《从paxos到Zookeeper分布式一致性原理与实践》、org.apache.zookeeper:zookeeper:3.4.0

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值