bzoj2306: [Ctsc2011]幸福路径 (概率+dp)

题解

f[t][i][j] f [ t ] [ i ] [ j ] 表示从 i i j 2t 2 t 步的最优解
会得到 f[t][i][j]=max(f[t1][i][k]+f[t1][k][j]p2t1) f [ t ] [ i ] [ j ] = m a x ( f [ t − 1 ] [ i ] [ k ] + f [ t − 1 ] [ k ] [ j ] ∗ p 2 t − 1 )
做到 p2t1<=eps p 2 t − 1 <= e p s 即可

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 110
int n,m,st;
long double ans=0,p,f[N][N],g[N][N],w[N];
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            f[i][j]=-1e30;
    for(int i=1;i<=n;i++) scanf("%Lf",&w[i]),f[i][i]=0;
    scanf("%d%Lf",&st,&p);
    for(int i=1;i<=m;i++){
        int x,y;scanf("%d%d",&x,&y);
        f[x][y]=p*w[y];
    }
    for(;p>(long double)(1e-8);p*=p){
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                g[i][j]=-1e30;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;++j){
                for(int k=1;k<=n;k++){
                    g[i][j]=max(g[i][j],f[i][k]+f[k][j]*p);
                }
            }
        }
        memcpy(f,g,sizeof(f));
    }
    for(int i=1;i<=n;i++) ans=max(ans,f[st][i]);
    printf("%.1Lf\n",ans+w[st]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值