常见排序算法的实现

本文介绍了三种经典的排序算法:插入排序、shell排序和堆排序,并详细解释了每种算法的工作原理及其实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常见排序算法的实现(一)→插入排序

插入排序是最简单最直观的排序算法了,它的依据是:遍历到第N个元素的时候前面的N-1个元素已经是排序好的了,那么就查找前面的N-1个元素把这第N个元素放在合适的位置,如此下去直到遍历完序列的元素为止。
  算法的复杂度也是简单的,排序第一个需要1的复杂度,排序第二个需要2的复杂度,因此整个的复杂度就是
  1 + 2 + 3 + …… + N = O(N ^ 2)的复杂度。

 

 // 插入排序
void InsertSort(int array[], int length)
{
    int i, j, key;

    for (i = 1; i < length; i++)
    {
        key = array[i];
        // 把i之前大于array[i]的数据向后移动
        for (j = i - 1; j >= 0 && array[j] > key; j--)
        {
            array[j + 1] = array[j];
        }
        // 在合适位置安放当前元素
        array[j + 1] = key;
    }
}

// 插入排序
void InsertSort(int array[], int length)
{
    int i, j, key;

    for (i = 1; i < length; i++)
    {
        key = array[i];
        // 把i之前大于array[i]的数据向后移动
        for (j = i - 1; j >= 0 && array[j] > key; j--)
        {
            array[j + 1] = array[j];
        }
        // 在合适位置安放当前元素
        array[j + 1] = key;
    }
}

 

 常见排序算法的实现(二)→shell排序

shell排序是对插入排序的一个改装,它每次排序把序列的元素按照某个增量分成几个子序列,对这几个子序列进行插入排序,然后不断的缩小增量扩大每个子序列的元素数量,直到增量为一的时候子序列就和原先的待排列序列一样了,此时只需要做少量的比较和移动就可以完成对序列的排序了。
// shell排序
void ShellSort(int array[], int length)
{
    int temp;

    // 增量从数组长度的一半开始,每次减小一倍
    for (int increment = length / 2; increment > 0; increment /= 2)
        for (int i = increment; i < length; ++i)
        {
            temp = array[i];
            // 对一组增量为increment的元素进行插入排序
            for (int j = i; j >= increment; j -= increment)
            {
                // 把i之前大于array[i]的数据向后移动
                if (temp < array[j - increment])
                {
                    array[j] = array[j - increment];
                }
                else
                {
                    break;
                }
            }
            // 在合适位置安放当前元素
            array[j] = temp;
        }
}

 

 

常见排序算法的实现(三)→堆排序

堆的定义:

    n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):

    (1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤)

    若将此序列所存储的向量R[1……n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。

    堆的这个性质使得可以迅速定位在一个序列之中的最小(大)的元素。

    堆排序算法的过程如下:1)得到当前序列的最小(大)的元素 2)把这个元素和最后一个元素进行交换,这样当前的最小(大)的元素就放在了序列的最后,而原先的最后一个元素放到了序列的最前面 3)的交换可能会破坏堆序列的性质(注意此时的序列是除去已经放在最后面的元素),因此需要对序列进行调整,使之满足于上面堆的性质。重复上面的过程,直到序列调整完毕为止。

// array是待调整的堆数组,i是待调整的数组元素的位置,length是数组的长度
void HeapAdjust(int array[], int i, int nLength)
{
    int nChild, nTemp;

    for (nTemp = array[i]; 2 * i + 1 < nLength; i = nChild)
    {
        // 子结点的位置是 父结点位置 * 2 + 1
        nChild = 2 * i + 1;

        // 得到子结点中较大的结点
        if (nChild != nLength - 1 && array[nChild + 1] > array[nChild])
            ++nChild;

        // 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点
        if (nTemp < array[nChild])
        {
            array[i] = array[nChild];
        }
        else    // 否则退出循环
        {
            break;
        }
    }

    // 最后把需要调整的元素值放到合适的位置
    array[i] = nTemp;
}

// 堆排序算法
void HeapSort(int array[], int length)
{
    // 调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素
    for (int i = length / 2 - 1; i >= 0; --i)
    {
        HeapAdjust(array, i, length);
    }

    // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
    for (int i = length - 1; i > 0; --i)
    {
        // 把第一个元素和当前的最后一个元素交换,
        // 保证当前的最后一个位置的元素都是在现在的这个序列之中最大的
        Swap(&array[0], &array[i]);

        // 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值
        HeapAdjust(array, 0, i);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值