Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k =
3.
Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums == null || k == 0) return new int[0];
int len = nums.length;
int[] res = new int[len - k + 1];
int index = 0;
Deque<Integer> q = new LinkedList<>();
for (int i = 0; i < len; i++) {
while (!q.isEmpty() && i - q.peekFirst() + 1 > k) q.pollFirst();
while (!q.isEmpty() && nums[i] > nums[q.peekLast()]) q.pollLast();
q.offer(i);
if(i + 1>= k) res[index++] = nums[q.peek()];
}
return res;
}