多目标优化(Multi-objective Optimization)是指迭代搜寻出能够满足所有约束
条件的解,而且可行解都是以点集的形式出现。
多目标优化的可行解是一组可选的可行解,是帕累托前沿线上的点。根据实际需求,在可选解集中挑选出符合实际问题的方案,做出最终选择。
CarlosA. Coello 等在2004年加入Pareto 竞争机制和微粒知识库的多目标粒子群(MOPSO)算法是解决多目标问题的非常经典的方法。较PSO有两个创新点。
基本思想:通过群体中个体之间的协作和信息共享来寻找最优解,它包含有进化计算和群体智能的特点。
关于非支配解(Pareto解)、pareto最优解集,pareto前沿的概念,请移步我前一篇文章
简述多目标优化、非劣解、pareto解概念
一 基本概念
MOPSO算法涉及到的参变量主要有:
粒子群数量;迭代次数;例子的速度范围、位置范围;适应度值;存档阈值;惯性因子;速度因子;网格。
控制参数的选择能够影响算法的性能效率。
一般参数设定:粒子数50个,非劣解集个数上限为50,个体学习因子 C1为 1,群体学习因
C2为 2,变异因子为 0.1,最大迭代次数为 200。
二,单目标和多目标的区别
MOPSO算法与PSO算法的区别主要涉及两个方面:
1,pbest的确定
单目标选择时,两个粒子的对比,只需要对比一下就可以选择出哪个较优。
多目标选择时,两个粒子的对比,并不能对比出哪个好一些。如果粒子的每个目标都要好的话,则该粒子更优。若有些更好,有些更差的话,就无法严格的说哪个好些,哪个差一些。
2,gbest的确定
单目标选择时,选择最优的那个粒子就可以。
多目标选择时,最优的个体有多个,引领种群进化方向的引领者不唯一,是多个。
MOP

最低0.47元/天 解锁文章
9873

被折叠的 条评论
为什么被折叠?



