Rightmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 47234 Accepted Submission(s): 17809
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7
6
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
第一类:0,1,5,6它们四个无论是多少次方它的个位都不会变
第二类:例如个位数是2它的n次方后的个位可能的情况是2,4,8,6,2,4,8,6。题目要求是N的N次方,所以奇数次方是取不到的,只能取4,6。这是偶数的情形,奇数也一样。不难发现4是它们的周期。到了这里,你只需要分析它余4是几判断下就好了。
#include<iostream>
using namespace std;
int main()
{
int n,t;
cin>>t;
while(t--)
{
cin>>n;
if(n % 10 == 0 || n % 10 == 1 || n % 10 == 5 || n % 10 == 6 || n % 10 == 9) cout<<n % 10<<endl;
else if(n % 10 == 4) cout<<6<<endl;
else if(n % 10 == 2)
{
if(n %4 == 2) cout<<4<<endl;
else cout<<6<<endl;
}
else if(n % 10 == 3)
{
if(n %4 == 1) cout<<3<<endl;
else cout<<7<<endl;
}
else if(n % 10 == 7)
{
if(n %4 == 1) cout<<7<<endl;
else cout<<3<<endl;
}
else if(n % 10 == 8)
{
if(n %4 == 2) cout<<4<<endl;
else cout<<6<<endl;
}
}
return 0;
}