Given any permutation of the numbers {0, 1, 2,..., N-1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (<=105) followed by a permutation sequence of {0, 1, ..., N-1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:10 3 5 7 2 6 4 9 0 8 1Sample Output:
9
#include <iostream>
#include <string>
#include <cstring>
#include <cstdio>
#include <set>
using namespace std;
int num[100010], myIndex[100010], flag = 0;
void mySwap(int num[], int a, int b) {
int tmp = num[a];
num[a] = num[b];
num[b] = tmp;
}
void output(int num[], int n) {
for (int i = 0; i < n; ++i)
{
printf("%d ", num[i]);
}
printf("\n");
}
int main() {
int n, cnt = 0, i;
scanf("%d", &n);
for(int i = 0; i < n; i++) {
scanf("%d", &num[i]);
myIndex[num[i]] = i;
if(num[i] != i)
flag += 1;
}
int first = 1;
while(true) {
int c1 = myIndex[0];
if(c1 != 0) {
int c2 = myIndex[c1];
mySwap(num, c1, c2);
myIndex[0] = c2;
myIndex[c1] = c1;
} else {
for(i = first; i < n; i++) {
if(num[i] != i) {
myIndex[0] = i;
myIndex[num[i]] = 0;
mySwap(num, 0, i);
first = i;
break;
}
}
if(i >= n) break;
}
cnt += 1;
}
printf("%d\n", cnt);
return 0;
}