Given a sequence of positive integers and another positive integer p. The sequence is said to be a "perfect sequence" if M <= m * p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (<= 105) is the number of integers in the sequence, and p (<= 109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:10 8 2 3 20 4 5 1 6 7 8 9Sample Output:
8
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
vector<long long> vec;
long long binarySearch(long long istart, long long iend, long long num)
{
while(istart <= iend) {
long long mid = (istart + iend) / 2;
if(vec[mid] == num) return mid;
else if(vec[mid] > num) iend = mid-1;
else istart = mid+1;
}
return istart;
}
int main() {
long long n, p;
scanf("%lld %lld", &n, &p);
for (long long i = 0; i < n; ++i)
{
long long x;
scanf("%lld", &x);
vec.push_back(x);
}
sort(vec.begin(), vec.end());
long long ans = 0;
for (long long i = 0; i < n; ++i)
{
long long x = p * vec[i];
long long pos = binarySearch(i+1, vec.size()-1, x);
long long tmp = pos - i;
if(pos < n && vec[pos] == x) tmp += 1; //如果x在数组内,加x加入
if(tmp > ans) ans = tmp;
}
printf("%lld\n", ans);
return 0;
}