分析
那么这道题首先处理出大矩形和小矩形的前缀和,然后用单调队列维护以 ( i , j − B + 1 + D ∼ j − 1 ) (i, j-B+1+D\sim j-1) (i,j−B+1+D∼j−1)为右下角的花坛肥沃度的最小值,再用一次单调队列维护以 ( i − A + 1 + C ∼ i − 1 , j − B + 1 + D ∼ j − 1 ) (i-A+1+C\sim i-1, j-B+1+D\sim j-1) (i−A+1+C∼i−1,j−B+1+D∼j−1)为右下角的花坛肥沃度的最小值,最后用大矩形减去该值即为答案
代码
#include <cstdio>
#include <cctype>
#define max(a,b) ((a)>(b)?(a):(b))
#define rr register
using namespace std;
int n,m,A,B,C,D,ans,q[1001],a[1001][1001],b[1001][1001],d[1001][1001],s[1001][1001];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
int main(){
n=iut(); m=iut(); A=iut(); B=iut(); C=iut(); D=iut();
for (rr int i=1;i<=n;++i)
for (rr int j=1;j<=m;++j)
b[i][j]=b[i][j-1]+b[i-1][j]-b[i-1][j-1]+iut();
for (rr int i=C+1;i<n;++i)
for (rr int j=D+1;j<m;++j)
a[i][j]=b[i][j]-b[i-C][j]-b[i][j-D]+b[i-C][j-D];
for (rr int i=n;i>=A;--i)
for (rr int j=m;j>=B;--j)
b[i][j]-=b[i-A][j]+b[i][j-B]-b[i-A][j-B];
for (rr int i=C+1;i<n;++i){
rr int head=1,tail=0;
for (rr int j=D+1;j<m;++j){
while (head<=tail&&q[head]<j-B+2+D) ++head;
while (head<=tail&&a[i][q[tail]]>=a[i][j]) --tail;
q[++tail]=j; if (j>B-2) d[i][j+1]=a[i][q[head]];
}
}
for (rr int j=B;j<=m;++j){
rr int head=1,tail=0;
for (rr int i=C+1;i<n;++i){
while (head<=tail&&q[head]<i-A+2+C) ++head;
while (head<=tail&&d[q[tail]][j]>=d[i][j]) --tail;
q[++tail]=i; if (i>A-2) s[i+1][j]=d[q[head]][j];
}
}
for (rr int i=A;i<=n;++i)
for (rr int j=B;j<=m;++j)
ans=max(ans,b[i][j]-s[i][j]);
printf("%d",ans);
return 0;
}