312. Burst Balloons
Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
(1) You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
(2) 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100
Example:
Given [3, 1, 5, 8]
Return 167
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.
Solution:
F[i,j] ------------------------------------- the max score you got when you had bursted from i + 1 to j - 1
So, We have
f[i][k] = max(f[i][k], f[i][j] + f[j][k] + nums[i] * nums[j] * nums[k]); where j is i + 1 to k - 1
class Solution {
public:
int maxCoins(vector<int>& nums) {
if (nums.size() == 0)
return 0;
if (nums.size() == 1)
return nums[0];
nums.insert(nums.begin(), 1);
nums.push_back(1);
int f[nums.size()][nums.size()]; memset(f, 0, sizeof(f));
for (int len = 2; len < nums.size(); ++ len)
for (int i = 0; i < nums.size() - len; ++ i) {
int k = i + len;
for (int j = i + 1; j < k; ++ j)
f[i][k] = max(f[i][k], f[i][j] + f[j][k] + nums[i] * nums[j] * nums[k]);
}
return f[0][nums.size() - 1];
}
};
本篇介绍了一个算法问题——通过智慧地爆破一系列带有数值的气球来获得最大金币数。提供了详细的解析过程及示例,利用动态规划求解最优解。
187

被折叠的 条评论
为什么被折叠?



