[hard]312. Burst Balloons

本篇介绍了一个算法问题——通过智慧地爆破一系列带有数值的气球来获得最大金币数。提供了详细的解析过程及示例,利用动态规划求解最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

312. Burst Balloons

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.

Find the maximum coins you can collect by bursting the balloons wisely.

Note: 
(1) You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
(2) 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

Example:

Given [3, 1, 5, 8]

Return 167

    nums = [3,1,5,8] --> [3,5,8] -->   [3,8]   -->  [8]  --> []
   coins =  3*1*5      +  3*5*8    +  1*3*8      + 1*8*1   = 167

Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.


Solution:

F[i,j] ------------------------------------- the max score you got when you had bursted from i + 1 to j - 1

So, We have

f[i][k] = max(f[i][k], f[i][j] + f[j][k] + nums[i] * nums[j] * nums[k]); where j is i + 1 to k - 1


class Solution {
public:
    int maxCoins(vector<int>& nums) {
        if (nums.size() == 0)
            return 0;
        if (nums.size() == 1)
            return nums[0];

        nums.insert(nums.begin(), 1);
        nums.push_back(1);
        
        int f[nums.size()][nums.size()]; memset(f, 0, sizeof(f));

        for (int len = 2; len < nums.size(); ++ len)
            for (int i = 0; i < nums.size() - len; ++ i) {
                int k = i + len;
                for (int j = i + 1; j < k; ++ j)
                    f[i][k] = max(f[i][k], f[i][j] + f[j][k] + nums[i] * nums[j] * nums[k]);
            }

        return f[0][nums.size() - 1];
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值