第二章 物理层

2.1 通信基础

2.1.1 基本概念

1. 数据、信号与码元

数据是指传送信息的实体。信号是指数据的电气或电磁表现,是数据在传输过程中的存在形式。数据和信号都可用“模拟的”或“数字的”来修饰:①连续变化的数据(或信号)称为模拟数据(或模拟信号);②取值仅允许为有限的几个离散数值的数据(或信号)称为数字数据(或数字信号)。

数据传输方式可分为串行传输和并行传输。串行传输是指一个一个的比特按照时间顺序传输(出于经济上的考虑,远距离通信通常采用串行传输),并行传输是指多个比特通过多条通信信道同时传输。

码元是指用一个固定时长的信号波形(数字脉冲)表示一位k进制数字,代表不同离散数值的基本波形,是数字通信中数字信号的计量单位,这个时长内的信号称为k进制码元,而该时长称为码元宽度。1码元可以携带多个比特的信息量。例如,在使用二进制编码时,只有两种不同的码元:一种代表0状态,另一种代表1状态。

2. 信源、信道与信宿

数据通信时指数字计算机或其他数字终端之间的通信。一个数据通信系统主要划分位信源、信道和信宿三部分。

信源是产生和发送数据的源头。信宿是接收数据的重点,它们通常都是计算机或其他数据终端装置。发送端信源发出的信息需要通过变换器转换成适合于在信道上传输的信号,而通过信道传输到接收端的信号先由反变换器转换成原始信息,再发送给信宿。

信道与电路并不等同,信道是信号的传输媒介。一个信道可视为一条线路的逻辑部件,一般用来表示向某个方向传送信息的介质,因此一条通信线路往往包含一条发送信道和一条接收信道。噪声源是信道上的噪声(即对信号的干扰)及分散在通信系统其他各处的噪声的集中表示。

信道按传输信号形式的不同可分为传送模拟信号的模拟信道和传送数字信号的数字信道两大类;信道按传输介质的不同可分为无线信道和有线信道。

信道上传送的信号有基带信号和宽带信号之分。基带信号将数字信号1和0直接用两种不同的电压表示,然后送到数字信道上传输(称为基带传输);宽带信号将基带信号进行调制后形成频分复用模拟信号,然后传送到模拟信道上去传输(称为宽带传输)。

从通信双方信息的交互方式看,可分为三种基本方式:

  1. 单工通信。只有一个方向的通信而没有反方向的交互,仅需要一条信道。例如,无线电广播、电视广播就属于这种类型。
  2. 半双工通信。通信的双方都可以发送或接收信息,但任何一方都不能同时发送和接收信息,此时需要两条信道。
  3. 全双工通信。通信双防可以同时发送和接收信息,也需要两条信道。

信道的极限容量是指信道的最高码元传输速率或信道的极限信息传输速率。

3. 速率、波特与宽度

速率也称数据率,指的是数据的传输速率,表示单位时间内传输的数据量。可以用码元传输速率和信息传输速率表示。

  1. 码元传输速率。又称码元速率、波形速率等,它表示单位时间内数字通信系统所传输的码元个数(也可称为脉冲个数或信号变化的次数),单位是波特(Baud)。1波特表示数字通信系统每秒传输一个码元。这里的码元可以是多进制的,也可以是二进制的,但码元速率与进制数无关。
  2. 信息传输速率。又称信息速率、比特率等,它表示单位时间内数字通信系统传输的二进制码元个数(即比特数),单位比特/秒(b/s)。

带宽原指信号具有的频带宽度,单位是赫兹(Hz)。在实际网络中,由于数据率是信道最重要的指标之一,而贷款与数据率存在数值上的互换关系,因此常用来表示网络的通信线路所能传输数据的能力。因此,带宽表示单位时间内从网络中的某一点到另一点所能通过的“最高数据率“。此时带宽的单位不再是Hz,而是b/s。

2.1.2 奈奎斯特定理与香农定理

1. 奈奎斯特定理

Nyquist定理又称奈氏准则,它指出在理想低通(没有噪声、带宽有限)的信道中,极限码元传输率为2W波特,其中W是理想低通信道的带宽,单位为Hz。若用V表示每个码元离散电平的数目(码元的离散电平数目是指有多少种不同的码元,比如有16种不同的码元,则需要4位二进制位,因此传输速率是码元传输率的4倍),则极限数据率为:2Wlog2V(b/s)2Wlog_2V(b/s)2Wlog2V(b/s)

对于奈氏准则,可以得出以下结论:

  1. 在任何信道中,码元传输的速率是有上限的。若传输速率超过此上限,就会出现严重的码间串扰问题(指在接收端收到的信号波形失去了码元之间的清晰界限),使得接收端不可能完全正确识别码元。
  2. 信道的频带越宽(即通过的信号高频分量越多),就可用更高的速率进行码元的有效传输。
  3. 奈氏准则给出了码元传输速率的限制,但并未对信息传输速率给出限制,即未对一个码元可以对应多少个二进制位给出限制。

由于码元的传输速率受奈氏准则的制约,所以要提高数据的传输速率,就必须设法使每个码元携带更多个比特的信息量,此时就需要采用多元制的调制方法。

2. 香农定理

Shannon定理给出了带宽受限且有高斯白噪声干扰的信道的极限数据传输率,当用此速率进行传输时,可以做到不产生误差。香农定理定义位:信道的极限数据传输率=Wlog2(1+S/N)(b/s)Wlog_2(1+S/N) (b/s)Wlog2(1+S/N)(b/s)。式中,W为信道的宽度,S为信道所传输信号的平均功率,N为信道内部的高斯噪声功率。S/N为信噪比,即信号的平均功率与噪声的平均功率之比,信噪比=10log10(S/N)(dB)10log_10(S/N) (dB)10log10(S/N)(dB),例如当S/N=10时,信噪比为10dB,而当S/N=1000时,信噪比为30dB。

对于香农定理,可以得出以下结论:

  1. 信道的带宽或信道的信噪比越大,信息的极限传输速率越高。
  2. 对一定的传输带宽和一定的信噪比,信息传输速率的上限是确定的。
  3. 只要信息的传输速率低于信道的极限传输速率,就能找到某种方法来实现无差错的传输。
  4. 香农定理得出的是极限信息传输速率,实际信道能达到的传输速率要比它低不少。

从香农定理可以看出,若信道带宽W或信噪比S/N没有上限(实际信道不存在这种情况)则信道的极限信息传输速率也没有上限。

奈氏准则只考虑了带宽与极限码元传输速率的关系,而香农定理不仅考虑到了带宽,也考虑到了信噪比。这从另一个侧面表明,一个码元对应的二进制位数是有限的。

2.1.3 编码与调制

数据无论是数字的还是模拟的,为了传输的目的都必须转变成信号。把数据变换为模拟信号的过程称为调制,把数据变换为数字信号的过程称为编码。

信号是数据的具体表示形式,它和数据有一定的关系,但又和数据不同。数字数据可以通过数字发送器转换为数字信号传输,也可以通过调制器转换成模拟信号传输;同样,模拟数据可以通过PCM编码器转换成数字信号传输,也可以通过放大器调制器转换成模拟信号传输。这样,就形成了下列4种编码方式。

1. 数字数据编码为数字信号

数字数据编码用于系带传输中,即在基本不改变数字信号频率的情况下,直接传输数字信号。具体用什么样的数字信号表示0及用什么样的数字信号表示1就是所谓的编码。编码的规则有多种,只要能有效地把1和0区分开即可,常用的编码方式有以下几种。

  1. 归零编码
  2. 非归零编码
  3. 反向非归零编码
  4. 曼彻斯特编码
  5. 差分曼彻斯特编码
  6. 4B/5B编码
2. 数字信号调制为模拟信号

数字数据调制技术在发送端将数字信号转换为模拟信号,而在接收端将模拟信号还原为数字信号,分别对应于调制调解器的调制和解调过程。基本的调整方法有如下几种:

  1. 幅移键控(ASK)。通过改变载波信号的振幅来表示数字信号1和0,而载波的频率和相位都不改变。比较容易实现,但抗干扰能力差。
  2. 频移键控(FSK)。通过改变载波信号的频率来表示数字信号1和0,而载波的振幅和相位都不改变。比较容易实现,但抗干扰能力差。
  3. 相移键控(PSK)。通过改变载波信号的相位来表示数字信号1和0,而载波的振幅和相位都不改变。它又分为绝对调相和相对调相。
  4. 正交振幅调制(QAM)。在频率相同的前提下,将ASK与PSK结合起来,形成叠加信号。设波特率为B,采用m个相位,每个相位有n种振幅,则该QAM技术的数据传输率R为R=Blog2(mn)R=Blog_2{(mn)}R=Blog2(mn),单位b/s。
3. 模拟数据编码为数字信号

这种编码方式最典型的例子是常用于对音频信号进行编码的脉码调制(PCM)。它主要包括三个步骤,即采样、量化和编码。

采样定理:在通信领域,带宽是指信号最高频率与最低频率之差,单位为Hz。因此,将模拟信号转换成数字信号时,假设原始信号中的最大频率为fff,那么采样频率f采样f_{采样}f必须大于等于最大频率fff的两倍,才能保证采样后的数字信号完整保留原始模拟信号的信息(只需记住结论)。另外,采样定理又称奈奎斯特定理。

  1. 采样是指对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。根据采样定理,当采样的频率大于等于模拟数据的频带带宽(最高变化频率)的两倍时,所得的离散信号可以无失真地代表被采样的模拟数据。
  2. 量化是把采样取得的电平幅值按照一定的分级标度转化为对应的数字值并取整数,这样就把连续的电平幅值转换为了离散的数字量。采样和量化的实质就是分割和转换。
  3. 编码是把量化的结果转换为与之对应的二进制编码。
4. 模拟数据调制为模拟信号

为了实现传输的有效性,可能需要较高的频率。这种调制方式还可以使用频分复用(FDM)技术,充分利用带宽资源。

2.1.4 电路交换、报文交换与分组交换

1. 电路交换

在进行数据传输前,两个结点之间必须先建立一条专用(双方独占)的物理通信路径(由通信双方之间的交换设备和链路逐段连接而成),该路径可能经过许多中间结点。这一路径在整个数据传输期间一直被独占,直到通信结束后才被释放。因此,电路交换技术分为三个阶段:连接建立、数据传输和连接释放。

从通信资源的分配角度来看,“交换”就是按照某种方式动态地分配传输线路的资源。电路交换的关键点是,在数据传输的过程中,用户始终占用端到端的固定传输带宽。

电路交换的优点:

  1. 通信时延小。由于通信线路为通信双方用户专用,数据直达,因此传输数据的时延非常小。当传输的数据量较大时,这一优点非常明显。
  2. 有序传输。
  3. 没有冲突。
  4. 适用范围广。
  5. 实时性强。
  6. 控制简单。

电路交换的缺点:

  1. 建立连接时间长。
  2. 线路独占。
  3. 灵活性差。
  4. 难以规格化。

注意,电路建立后,除源结点和目的结点外,电路上的任何结点都采取“直通方式”接收数据和发送数据,即不会存在存储转发所耗费的时间。

2. 报文交换

数据交换的单位是报文,报文携带有目标地址、源地址等信息。报文交换在交换结点采用的是存储转发的传输方式。
报文交换的优点如下:

  1. 无须建立连接。
  2. 动态分配线路。
  3. 提高线路可靠性。
  4. 提高线路利用率。
  5. 提供多目标服务。

报文交换的缺点如下:

  1. 转发时延。
  2. 报文交换对报文的大小没有限制,这就要求网络结点需要有较大的缓存空间。

报文交换主要使用在早期的电报通信网中,现在较少使用,通常被较先进的分组交换方式所取代。

3. 分组交换

同报文交换一样,分组交换也采用存储转发方式,但解决了报文交换中大报文传输的问题。分组交换限制了每次传送的数据块大小的上限,把大的数据块划分为合理的小数据块,再加上一些必要的控制信息(如源地址、目的地址和编号信息等),构成分组(Packet)。网络结点根据控制信息把分组送到下一结点,下一结点接收到分组后,暂时保存并排队等待传输,然后根据分组控制信息选择它的下一个结点,直到到达目的结点。

分组交换的优点:

  1. 无建立时延。
  2. 线路利用率高。
  3. 简化了存储管理。
  4. 加速传输。
  5. 减少了出错概率和重发数据量。

分组交换的缺点:

  1. 存在传输时延
  2. 需要传输额外的信息量。
  3. 当分组交换采用数据报服务时,可能会出现失序、丢失或重复分组,分组到达目的结点时,要对分组按编号进行排序等工作,因此很麻烦。若采用虚电路服务,虽无失序问题,但有呼叫建立、数据传输和虚电路释放三个过程。

2.1.5 数据报与虚电路

分组交换根据其通信子网向端点系统提供的服务,还可进一步分为面向连接的虚电路方式和无连接的数据报方式。这两种服务方式都由网络层提供。要注意数据报方式和虚电路方式是分组交换的两种方式。

1. 数据报

作为通信子网用户的端系统发送一个报文时,在端系统中实现的高层协议先把报文拆成若干带有序号的数据单元,并在网络层加上地址等控制信息后形成数据报分组(即网络层PDU)。中间结点存储分组很短一段时间,找到最佳的路由后,尽快转发每个分组。不同的分组可以走不同的路径,也可以按不同的顺序到达目的结点。

数据报服务的特点:

  1. 发送分组前双方不需要建立连接。
  2. 网络尽最大努力交付,传输不保证可靠性,所以可能丢失;为每个分组独立地选择路由,转发的路径可能不同,因而分组不一定按序到达目的结点。
  3. 发送的分组中要包括发送端和接收端的完整地址,以便可以独立传输。
  4. 分组在交换结点存储转发时,需要排队等候处理,这会带来一定的时延。
  5. 网络具有冗余路径,当某一交换结点或一段链路出现故障时,可相应地更新转发表,寻找另一条路径转发分组,对故障的适应能力强。
  6. 存储转发的延时一般较小,提高了网络的吞吐量。
  7. 收发双方不独占某一链路,资源利用率较高。
2. 虚电路

虚电路方式视图将数据报方式与电路交换方式结合起来,充分发挥两种方法的优点,以达到最佳的数据交换效果。在分组发送之前,要求在发送方和接收方建立一条逻辑上相连的虚电路,并且连接一旦建立,就固定了虚电路所对应的物理路径。与电路交换类似,整个通信过程分为三个阶段:虚电路建立、数据传输与虚电路释放。

虚电路服务的特点:

  1. 虚电路通信链路的建立和拆除需要时间开销,对交互式应用和小量的短分组情况显得很浪费,但对长时间、频繁的数据交换效率较高。
  2. 虚电路的路由选择体现在连接建立阶段,连接建立后,就确定了传输路径。
  3. 虚电路提供了可靠的通信功能,能保证每个分组正确且有序到达。此外,还可以对两个数据端点的流量进行控制,当接收方来不及接收数据时,可以通知发送方暂缓发送。
  4. 虚电路有一个致命的弱点,当网络中的某个结点或某条链路出现故障而彻底失效时,所有经过该结点或该链路的虚电路将遭到破坏。
  5. 分组首部并不包含目的地址,而包含虚电路标识符,相对数据报开销小。

2.2 传输介质

2.2.1 双绞线、同轴电缆、光纤与无线传输介质

传输介质也称传输媒体,它是发送设备和接收设备之间的物理通路。传输介质可分为导向传输介质和非导向传输介质。在导向传输介质中,电磁波被导向沿着固体媒介(铜线或光纤)传播,而非导向传输介质可以是空气、真空或海水等。

1. 双绞线

双绞线是最常用的古老传输介质,它由两根采用一定规则并排绞合的、相互绝缘的铜导线组成。绞合可以减少对相邻导线的电磁干扰。为了进一步提高抗电磁干扰能力,可在双绞线的外面再加上一个由金属丝编织成的屏蔽层,这就是屏蔽双绞线(STP)。无屏蔽层的双绞线称为非屏蔽双绞线(UTP)。

双绞线价格便宜,是最常用的传输介质之一,在局域网和传统电话网中普遍使用。双绞线的带宽取决于铜线的粗细和传输的距离。模拟传输和数字传输都可使用双绞线,其通信距离一般为几千米到数十千米。距离太远时,对于模拟传输,要用放大器放大衰减的信号;对于数字传输,要用中继器将失真的信号整形。

2. 同轴电缆

同轴电缆由内导体、绝缘层、网状编织屏蔽层和塑料外层构成。按特性阻抗数值的不同,通常将同轴电缆分为两类:50Ω同轴电缆和75Ω同轴电缆。其中,50Ω同轴电缆主要用于传送基带数字信号,又称基带同轴电缆,它在局域网中应用广泛;75Ω同轴电缆主要用于传送宽带信号,又称宽带同轴电缆,主要用于有线电视系统。

由于外导体屏蔽层的作用,同轴电缆具有良好的抗干扰特性,被广泛用于传输较高速率的数据,其传输距离更远,但价格较双绞线贵。

3. 光纤

光纤通信就是利用光导纤维(简称光纤)传递光脉冲来进行通信。有光脉冲表示1,无光脉冲表示0.可见光的频率为10810^8108MHz,因此光纤通信系统的带宽范围极大。

光纤主要由纤心和包层构成,光波通过纤心进行传导,包层较纤心有较低的折射率。当光线从高折射率的介质射向低折射率的介质时,其折射角大于入射角。因此,如果入射角足够大,那么就会出现全反射,即光线碰到包层时会折射回纤心,这个过程不断重复,光也就沿着光纤传输下去。

只要从纤心中射到纤心表面的光线的入射角大于某个临界角度,就会产生全反射。因此,从不同角度入射的多束光线可在一条光纤中传输,这种光纤称为多模光纤,多模光纤的光源为发光二极管。光脉冲在多模光纤中传输时会逐渐展宽,造成失真,因此多模光纤只适合于近距离传输。

光纤的直径减小到仅一个光波长度时,光纤就像一根波导那样,可使光线一直向前传播,而不会产生多次反射,这样的光纤就是单模光纤。单模光纤的纤心很细,直径只有几微米,制造成本较高。同时,单模光纤的光源为定向性很好的激光二极管,因此单模光纤的衰减较小,适合远距离传输。

4. 无线传输介质

无线通信已广泛应用于移动电话领域,构成蜂窝式无线电话网。随着便携式计算机的出现,以及在军事、野外等特殊场合下移动通信联网的需要,促进了数字化移动通信的发展,现在无线局域网产品的应用已非常普遍。

  1. 无线电波
  2. 微波、红外线和激光

2.2.2 物理层接口的特性

物理层考虑的是如何在连接到各台计算机的传输媒体上传输数据比特流,而不指具体的传输媒体。物理层应尽可能屏蔽各种物理设备的差异,使数据链路层只需考虑本层的协议和服务。物理层的主要任务可以描述为确定与传输媒体的接口有关的一些特性:

  1. 机械特性。主要定义物理连接的边界点,即接插装置。规定物理连接时所采用的规格、引线的数目、引脚的数量和排列情况等。
  2. 电气特性。规定传输二进制位时,线路上信号的电压高低、阻抗匹配、传输速率和距离限制等。
  3. 功能特性。指明某条线上出现的某一电平的电压表示何种意义,接口部件的信号线(数据线、控制线、定时线等)的用途。
  4. 规程特性。主要定义各条物理线路的工作规程和时序关系。

常用的物理层接口标准有 EIA RS-232-C、ADSL和SONET/SDH等。

2.3 物理层设备

2.3.1 中继器

中继器又称为转发器,主要功能是将信号整形并放大再转发出去,以消除信号经过一长段电缆后,因噪声或其他原因而造成的失真和衰减,使信号的波形和强度达到所需要的要求,进而扩大网络传输的距离。其原理是信号再生(而非简单地将衰减的信号放大)。

2.3.2 集线器

集线器(Hub)实质上是一个多端口的中继器,它也工作在物理层。当Hub工作时,一个端口接收到数据信号后,由于信号在从端口到Hub的传输过程中已有衰减,所以Hub便将该信号进行整形放大,使之再生(恢复)到发送时的状态,紧接着转发到其他所有(除输入端口外)处于工作状态的端口。如果同时有两个或多个端口输入,那么输出时会发生冲突,致使这些数据都无效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值