所以基本上,min_sample_split是分割所需的最小样本数。例如,如果min_sample_split = 6并且节点中有4个样本,则不会发生拆分(不管熵是多少)。在
另一方面,min_sample_leaf基本上是叶节点所需的最小样本数。假设min_sample_leaf = 3并且一个含有5个样本的节点可以分别分裂成2个和3个大小的叶子节点,那么这个分裂就不会发生,因为最小的叶子大小为3
本文解析了min_sample_split和min_sample_leaf这两个参数在决策树构建中如何影响节点拆分,特别是它们如何控制最小样本数量以防止过度拟合。通过实例说明了这两个参数如何决定节点是否分裂,对于数据集的划分至关重要。
所以基本上,min_sample_split是分割所需的最小样本数。例如,如果min_sample_split = 6并且节点中有4个样本,则不会发生拆分(不管熵是多少)。在
另一方面,min_sample_leaf基本上是叶节点所需的最小样本数。假设min_sample_leaf = 3并且一个含有5个样本的节点可以分别分裂成2个和3个大小的叶子节点,那么这个分裂就不会发生,因为最小的叶子大小为3
1093

被折叠的 条评论
为什么被折叠?