《简单粗暴TensorFlow2.0》—学习笔记

本文全面介绍了TensorFlow 2.0的基础安装、环境配置及核心功能,涵盖模型建立、训练、优化到部署全流程。深入解析了多层感知机、卷积神经网络、循环神经网络等模型,并探讨了信息论、深度强化学习等高级主题。同时,提供了TensorFlow常用模块的使用指南,包括TensorBoard可视化、数据预处理、模型导出及大规模训练技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基础

安装和环境配置

  • pycharm
    在这里插入图片描述

TensorFlow基础

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

TensorFlow模型建立与训练

在这里插入图片描述

模型(Model)与层(Layer)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

多层感知机(MLP)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

交叉熵(cross entropy)用来求目标与预测值之间的差距。

信息论
  • 信息量
    在这里插入图片描述

  • 在这里插入图片描述
  • 相对熵(KL散度)
    相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异。
    在这里插入图片描述
  • 交叉熵
    在这里插入图片描述
机器学习中交叉熵的应用
  • 单分类问题中的应用
    在这里插入图片描述
    在这里插入图片描述
  • 多分类问题中的应用
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

卷积神经网络(CNN)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

循环神经网络(RNN)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

深度强化学习(DRL)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Keras Pipeline*

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

自定义层、损失函数和评估指标*

在这里插入图片描述
在这里插入图片描述

TensorFlow 常用模块

tf.train.Checkpoint:变量的保存与恢复

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

TensorBoard:训练过程可视化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Permission denied: ‘/tmp/.tensorboard-info/pid-30349.info’

在这里插入图片描述
在这里插入图片描述

tf.data:数据的构建与预处理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

TFRecord:TensorFlow数据集存储格式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

@tf.function:Graph Execution模式 *

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

tf.TensorArray:TensorFlow动态数组 *

在这里插入图片描述
在这里插入图片描述

tf.config:GPU的使用与分配 *

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

部署

TensorFlow模型导出

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

TensorFlow Serving

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

TensorFlow Lite

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

TensorFlow in JavaScript

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

<html>

<head>
    <script src="https://unpkg.com/@tensorflow/tfjs"></script>
    <script src="https://unpkg.com/@tensorflow-models/mobilenet"> </script>
</head>

<video width=400 height=300></video>
<p></p>
<img width=400 height=300 />

<script>
    const video = document.querySelector('video')
    const image = document.querySelector('img')
    const status = document.querySelector("p")

    const canvas = document.createElement('canvas')
    const ctx = canvas.getContext('2d')

    let model

    main()

    async function main () {
        status.innerText = "Model loading..."
        model = await mobilenet.load()
        status.innerText = "Model is loaded!"

        const stream = await navigator.mediaDevices.getUserMedia({ video: true })
        video.srcObject = stream
        await video.play()
        
        canvas.width = video.videoWidth
        canvas.height = video.videoHeight

        refresh()
    }

    async function refresh(){
        ctx.drawImage(video, 0,0)
        image.src = canvas.toDataURL('image/png')
        
        await model.load()
        const predictions = await model.classify(image)
        
        const className = predictions[0].className
        const percentage = Math.floor(100 * predictions[0].probability)
        
        status.innerHTML = percentage + '%' + ' ' + className
        
        setTimeout(refresh, 100)
    }

</script>

</html>

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

<html>
<head>
    <script src="http://unpkg.com/@tensorflow/tfjs/dist/tf.min.js"></script>
    <script>
    const xsRaw = tf.tensor([2013, 2014, 2015, 2016, 2017])
    const ysRaw = tf.tensor([12000, 14000, 15000, 16500, 17500])

    // 归一化
    const xs = xsRaw.sub(xsRaw.min())
                    .div(xsRaw.max().sub(xsRaw.min()))
    const ys = ysRaw.sub(ysRaw.min())
                    .div(ysRaw.max().sub(ysRaw.min()))

    const a = tf.scalar(Math.random()).variable()
    const b = tf.scalar(Math.random()).variable()

    // y = a * x + b.
    const f = (x) => a.mul(x).add(b)
    const loss = (pred, label) => pred.sub(label).square().mean()

    const learningRate = 1e-3
    const optimizer = tf.train.sgd(learningRate)

    // 训练模型
    for (let i = 0; i < 10000; i++) {
        optimizer.minimize(() => loss(f(xs), ys))
    }

    // 预测
    console.log(`a: ${a.dataSync()}, b: ${b.dataSync()}`)
    const preds = f(xs).dataSync()
    const trues = ys.arraySync()
    preds.forEach((pred, i) => {
        console.log(`x: ${i}, pred: ${pred.toFixed(2)}, true: ${trues[i].toFixed(2)}`)
    })
    </script>
</head>
</html>

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

大规模训练与加速

TensorFlow分布式训练

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

使用TPU训练TensorFlow模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

扩展

TensorFlow Hub模型复用

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

TensorFlow Datasets数据集载入

在这里插入图片描述
在这里插入图片描述

参考资料
一文搞懂交叉熵在机器学习中的使用,透彻理解交叉熵背后的直觉
tensorboard 提示权限不足

### 回答1: TensorFlow 2.0的设计理念是简单粗暴,旨在提供更加直观、易用的编程体验,让用户更快速地构建、训练和部署机器学习模型。以下是TensorFlow 2.0简单粗暴特性: 1. 动态图计算:TensorFlow 2.0默认采用动态图计算方式,即使用即定义计算图。这使得用户能够像编写Python代码一样自然地构建和调试模型,无需担心图构建过程中的繁琐细节。 2. Keras集成:TensorFlow 2.0将Keras作为其高级神经网络API的标准前端,实现了更加简洁、易懂的模型构建和训练接口。用户无需再额外安装和配置Keras,而且可以直接利用Keras强大的功能,如模型序列化、多种损失函数和优化器等。 3. 切换模式:TensorFlow 2.0提供了一个方便的转换工具,用户可以将TensorFlow 1.x的代码迁移到2.0版本,以享受新的特性,无需重写整个代码。这种平滑迁移的设计使得用户更容易接受新版本并从中受益。 4. Eager Execution(即时执行):TensorFlow 2.0中的Eager Execution模式使得用户可以逐行执行模型代码并立即返回结果,这有助于快速验证和调试模型,尤其对于初学者来说更容易上手。 5. SavedModel格式:TensorFlow 2.0引入了SavedModel格式作为模型的默认保存格式,该格式具有更好的跨平台和版本控制的兼容性。用户能够更方便地保存和分享自己的模型,同时也能更好地与其他TensorFlow开发者进行模型交流。 总之,TensorFlow 2.0简单粗暴特性使得机器学习的开发变得更加直观、高效,并能够吸引更多的开发者加入到机器学习的领域中。 ### 回答2TensorFlow 2.0是一种简单粗暴的机器学习框架。相较于以往版本,2.0在易用性、灵活性和效率方面都有很大的提升。 首先,TensorFlow 2.0引入了eager execution(即即时执行),这意味着我们可以像编写Python代码一样编写和运行TensorFlow操作,而无需定义计算图。这样可以更容易地调试和理解代码,使得开发过程更加直观和高效。 其次,TensorFlow 2.0取消了许多低级API,如tf.Session和tf.placeholder,大大减少了代码的复杂度。取而代之的是一些更高级且易用的API,如tf.keras,它提供了一个简单而且强大的接口来构建神经网络模型。我们可以使用一些简单的函数调用来定义和训练模型,从而减少了样板代码,同时还能保持高度的灵活性。 此外,TensorFlow 2.0还提供了一个称为tf.data的新的高性能数据输入管道。我们可以使用tf.data.Dataset将数据集导入模型中,并进行预处理、批处理等操作,以便更好地利用硬件资源,并实现更高效的训练过程。 最后,TensorFlow 2.0充分利用了现代硬件的加速能力,如GPU和TPU。它使用了tf.function装饰器来自动转换函数为高性能的图执行模式,并支持分布式训练,以便在分布式系统上进行大规模的模型训练。 综上所述,TensorFlow 2.0确实是一种简单粗暴的机器学习框架。它简化了开发过程,提高了代码的可读性和可维护性,并利用了现代硬件的优势,从而大大提升了训练效率和性能。无论是初学者还是有经验的开发者,都可以受益于这个强大而易用的框架。 ### 回答3: 简单粗暴TensorFlow 2.0是一个更新版本的Google开源机器学习框架,旨在让使用变得更加简便。TensorFlow 2.0采用了Eager Execution模式,移除了一些繁琐的操作,与Python的语义更加契合。这使得建立和训练神经网络变得更加直观和容易。 TensorFlow 2.0引入了Keras作为其主要高级API,将其整合为TensorFlow的一部分。Keras提供了丰富而直观的高级API,可以方便地构建各种神经网络模型。通过将Keras集成到TensorFlow中,使用者可以轻松地创建、训练和部署深度学习模型。 TensorFlow 2.0还引入了tf.function装饰器,允许将普通Python函数转换为高效的TensorFlow图,加速模型的训练和推理过程。 此外,TensorFlow 2.0对于分布式训练、模型部署和端到端生态系统的支持都有所改进。它提供了更好的工具和接口,使得分布式机器学习变得更加容易。TensorFlow 2.0还支持模型在移动设备、Web和边缘设备上部署,并提供了可拓展的生态系统,包括TensorFlow Hub、TensorBoard和TensorFlow.js等。 总之,简单粗暴TensorFlow 2.0通过增强开发者的体验和提供更加直观的API,大大简化了神经网络的构建和训练过程。新版本的引入了许多新特性和改进,使得TensorFlow 2.0成为构建高性能、可扩展的机器学习模型的理想选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值