The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both
indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
没做出来,看了yu的答案写的。不过确实是backtracking的思想: 如果到了符合条件的记录,如果不到,那么尝试每一个可能的子集,如果当前没有问题,那么继续下一个判断
class Solution {
public:
void fillRes(vector<int>& indices,int n)
{
vector<string> r;
for(int i=0; i<n; i++){
string s(n,'.');
s[indices[i]]='Q';
r.push_back(s);
}
res.push_back(r);
}
bool isValid(vector<int>& indices, int c)
{
<span style="white-space:pre"> </span>//queen cannot sit on the same col or diagonal or row
for(int i=0; i<c;i++){
if(indices[i]==indices[c]|| (abs(indices[i]-indices[c])==c-i))
return false;
}
return true;
}
void nqueens(vector<int>& indices, int c, int n)
{
if (c==n){
<span style="white-space:pre"> </span> //the last one, push to res
fillRes(indices,n);
return;
} // loop each possible one if valid next
for (int i=0; i<n; i++){
indices[c]=i;
if(isValid(indices,c))
nqueens(indices,c+1,n);
}
}
vector<vector<string> > solveNQueens(int n) {
res.clear();
vector<int> indices(n,-1);
nqueens(indices,0,n);
return res;
}
private:
vector<vector<string> > res;
};