l i g h t o j 1236 lightoj 1236 lightoj1236
- 题目
lightoj1236 - 题意
- 分析
a = p 1 a 1 ∗ p 2 a 2 . . . ∗ p k c k a = p_1^{a_1}*p_2^{a_2}...*p_k^{c_k} a=p1a1∗p2a2...∗pkck
b = p 1 b 1 ∗ p 2 b 2 . . . ∗ p k b k b = p_1^{b_1}*p_2^{b_2}...*p_k^{b_k} b=p1b1∗p2b2...∗pkbk
\qquad \quad ⇓ \Downarrow ⇓
l c m ( a , b ) = p 1 m a x ( a 1 , b 1 ) ∗ p 2 m a x ( a 2 , b 2 ) ∗ . . . ∗ p k m a x ( a k , b k ) lcm(a,b) = p_1^{max(a_1,b_1)}*p_2^{max(a_2,b_2)}*...*p_k^{max(a_k,b_k)} lcm(a,b)=p1max(a1,b1)∗p2max(a2,b2)∗...∗pkmax(ak,bk)
即:
c 1 = m a x ( a 1 , b 1 ) , c 2 = m a x ( a 2 , b 2 ) . . . c k = m a x ( a k , b k ) c_1 = max(a_1,b_1),c_2 = max(a_2,b_2)...c_k = max(a_k,b_k) c1=max(a1,b1),c2=max(a2,b2)...ck=max(ak,bk)
以 c 1 c_1 c1为例:
当 c 1 = a 1 c_1 = a_1 c1=a1时, 0 ≤ b 1 ≤ c 1 0{\leq}b_1{\leq}c_1 0≤b1≤c1
当 c 1 = b 1 c_1 = b_1 c1=b1时, 0 ≤ a 1 ≤ c 1 0{\leq}a_1{\leq}c_1 0≤a1≤c1
那么 ( a 1 , b 1 ) (a_1,b_1) (a1,b1),这样的组合有 2 ∗ ( c 1 + 1 ) 2*(c_1+1) 2∗(c1+1) ( a 1 = = c 1 , b 1 = = c 1 ) (a_1 == c_1,b_1 == c_1) (a1==c1,b1==c1) 重复一个
对于所有的 c c c
a n s = ∏ i = 1 k 2 ∗ ( c i + 1 ) ans = {\prod}_{i = 1}^{k} 2*(c_i+1) ans=∏i=1k2∗(ci+1)
又因为 ( a , b ) (a,b) (a,b), ( b , a ) (b,a) (b,a)属于同一种组合,除了 ( n , n ) (n,n) (n,n)的情况答案均重复统计了 2 2 2次,所以先把 ( n , n ) (n,n) (n,n)的情况补成两次即 a n s + = 1 ans += 1 ans+=1,最终答案即为: a n s / = 2 ans /= 2 ans/=2 - 代码
/*
独立思考
一个题不会做,收获5%,写了代码10%,提交对了30%,总结吃透了这个题才是100%.
*/
#include<bits/stdc++.h>
using namespace std;
template <typename T>
void read(T &x)
{
x = 0;
char c = getchar();
int sgn = 1;
while (c < '0' || c > '9') {if (c == '-')sgn = -1; c = getchar();}
while (c >= '0' && c <= '9')x = x * 10 + c - '0', c = getchar();
x *= sgn;
}
template <typename T>
void out(T x)
{
if (x < 0) {putchar('-'); x = -x;}
if (x >= 10)out(x / 10);
putchar(x % 10 + '0');
}
typedef long long ll;
typedef unsigned long long ull;
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a;}
const int N = 1e7 + 5;
int prime[N/10];
bool is_prime[N];
int tot = 0;
void sieve()
{
for (int i = 1; i <= N; i++) is_prime[i] = 1;
is_prime[0] = is_prime[1] = 0;
for (int i = 2; i <= N; i++)
{
if (is_prime[i])
{
prime[++tot] = i;
for (int j = 2 * i; j <= N; j += i) is_prime[j] = 0;
}
}
}
ll solve(ll n)
{
ll ans = 1;
for (int i = 1; i <= tot && n > 1; i++)
{
if (n % prime[i] == 0)
{
int c = 0;
while (n % prime[i] == 0)
{
n /= prime[i];
c++;
}
ans *= (2 * c + 1);
}
}
if (n > 1) ans *= 3;
ans = (ans + 1) / 2;
return ans;
}
int main ()
{
int t;
int flag = 0;
read(t);
sieve();
while (t--)
{
ll n;
read(n);
printf("Case %d: %lld\n", ++flag, solve(n));
}
return 0 ;
}
- 方法
唯一分解定理 - 总结
l c m lcm lcm, g c d gcd gcd的问题思考可以往唯一分解定理那里去想。