桶排序

//桶排序
typedef struct node
{
int key;
struct node * next;
}KeyNode;

void inc_sort(int keys[],int size,int bucket_size)
{
KeyNode **bucket_table=(KeyNode **)malloc(bucket_size*sizeof(KeyNode *));
for(int i=0;i<bucket_size;i++)
{
bucket_table[i]=(KeyNode *)malloc(sizeof(KeyNode));
bucket_table[i]->key=0; //记录当前桶中的数据量
bucket_table[i]->next=NULL;
}

for(int j=0;j<size;j++)
{
KeyNode *node=(KeyNode *)malloc(sizeof(KeyNode));
node->key=keys[j];
node->next=NULL;
//映射函数计算桶号
int index=keys[j]/10;
//初始化P成为桶中数据链表的头指针
KeyNode *p=bucket_table[index];
//该桶中还没有数据
if(p->key==0)
{
bucket_table[index]->next=node;
(bucket_table[index]->key)++;
}
else
{
//链表结构的插入排序
while(p->next!=NULL&&p->next->key<=node->key)
p=p->next;
node->next=p->next;
p->next=node;
(bucket_table[index]->key)++;
}
}

//打印结果
for(int b=0;b<bucket_size;b++)
for(KeyNode *k=bucket_table[b]->next; k!=NULL; k=k->next)
cout<<k->key<<" ";
cout<<endl;
}
MATLAB代码实现了一个基于多种智能优化算法优化RBF神经网络的回归预测模型,其核心是通过智能优化算法自动寻找最优的RBF扩展参数(spread),以提升预测精度。 1.主要功能 多算法优化RBF网络:使用多种智能优化算法优化RBF神经网络的核心参数spread。 回归预测:对输入特征进行回归预测,适用于连续值输出问题。 性能对比:对比不同优化算法在训练集和测试集上的预测性能,绘制适应度曲线、预测对比图、误差指标柱状图等。 2.算法步骤 数据准备:导入数据,随机打乱,划分训练集和测试集(默认7:3)。 数据归一化:使用mapminmax将输入和输出归一化到[0,1]区间。 标准RBF建模:使用固定spread=100建立基准RBF模型。 智能优化循环: 调用优化算法(从指定文件夹中读取算法文件)优化spread参数。 使用优化后的spread重新训练RBF网络。 评估预测结果,保存性能指标。 结果可视化: 绘制适应度曲线、训练集/测试集预测对比图。 绘制误差指标(MAE、RMSE、MAPE、MBE)柱状图。 十种智能优化算法分别是: GWO:灰狼算法 HBA:蜜獾算法 IAO:改进天鹰优化算法,改进①:Tent混沌映射种群初始化,改进②:自适应权重 MFO:飞蛾扑火算法 MPA:海洋捕食者算法 NGO:北方苍鹰算法 OOA:鱼鹰优化算法 RTH:红尾鹰算法 WOA:鲸鱼算法 ZOA:斑马算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值