Reflection Basics and Class Class

博客介绍了标准J2SE平台库中的反射API,它能让类进行自我反射。可通过反射API发现类、方法和字段的名称,还能调用方法和访问数组。详细说明了如何获取类的实例、类名、超类,以及如何获取和调用类的方法,包括特定方法的调用。

The standard J2SE platform libraries include a reflection API. This API allows classes to reflect on themselves, to see their inner selves. The reflection API lets you discover the name of classes, methods, and fields. You can also invoke those methods and access arrays without using square brackets.

The heart of the reflection API is the Class class. This class allows you to find out the name of a class, its access modifier, fields, methods, and so forth. For any instance of a class, you can get its Class class by calling the getClass method:

Class c = anInstance.getClass();

If you don't happen to have an instance of class (and don't want to create one), just attach .class to the end of the class name and you have the Class instance for that class.

Class c = MyClass.class;

The same even works for primitives:

Class c = int.class;

This last one might seem odd, but it allows you to specify argument types when calling methods (via Reflection) that accept primitive arguments.

One thing typically done is create a Class by passing its string name to the forName method of Class.

Class c = Class.forName(“java.awt.Button”);

This is done so that at the compile time you don't have to have the class within the quoted string available.

Once you have a Class class, you can find out the name of the class with its getName method:

Class c = java.awt.Button.class;

System.out.println(“Name: ” + c.getName());

Or, you can find out its superclass with its getSuperClass:

System.out.println(“Super: ” + c.getSuperClass().getName());

Moving from classes to methods takes us to the Method class, found in the java.lang.reflect package. With the Method class, you can discover all methods of a class (with getMethods) and even invoke them (with invoke).

The following program demostrates getting the mothods of a class:

import java.lang.reflect.*;



public class ListMethods {

public static void main(String[] args) {

if (args.length == 0) {

System.err.println(“Please include full qualified class name on command line”);

return;

}

for (int i = 0, n = args.length; i < n; ++i) {

listMethods(args[i]);

}

}



private static void listMethods(String name) {

try {

Class c = Class.forName(name);

System.out.println(“----” + c.getName() + “----”);

Method[] methods = c.getMethods();

for (int i = 0, n = methods.length; i < n; ++i) {

System.out.println(methods[i].getName());

System.out.println(“/t”, methods[i]);

}

} catch (ClassNotFoundException e) {

System.out.println(“Bad classname: “+ name);

}

}

}

Notice that the output includes all methods available through its superclass, too. To limit the output to only those methods declared in the class itself, change the getMethods call to getDeclaredMethods.

While the getMethods of Class allows you to get all the methods in a class, more typically, you want a specific method of a class. For that, there's the getMethod(String name, Class[] types) method. Once you have that method, you can invoke it with the invoke(Object instance, Object[] args) method. For static methods, the instance argument can be null.

The value for the arguments don't matter when finding a method, only the class types. At invoke time, you pass in the actual arguments values. For primitive types, you must box them up as objects (like using Integer for int).

The following demostrates invoking a method through reflection, and inserting a String in the middle of a StringBuffer.

StringBuffer buffer = new StringBuffer(“Held”);

Class c = buffer.getClass();

Class[] types = {int.class, String.class};

Method method = c.getMethod(“insert”, types);

Object[] theArgs = {new Integer(2), “llo, wor”};

method.invoke(buffer, theArgs);

【路径规划】(螺旋)基于A星全覆盖路径规划研究(Matlab代码实现)内容概要:本文围绕“基于A星算法的全覆盖路径规划”展开研究,重点介绍了一种结合螺旋搜索策略的A星算法在栅格地图中的路径规划实现方法,并提供了完整的Matlab代码实现。该方法旨在解决移动机器人或无人机在未知或部分已知环境中实现高效、无遗漏的区域全覆盖路径规划问题。文中详细阐述了A星算法的基本原理、启发式函数设计、开放集与关闭集管理机制,并融合螺旋遍历策略以提升初始探索效率,确保覆盖完整性。同时,文档提及该研究属于一系列路径规划技术的一部分,涵盖多种智能优化算法与其他路径规划方法的融合应用。; 适合人群:具备一定Matlab编程基础,从事机器人、自动化、智能控制及相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于服务机器人、农业无人机、扫地机器人等需要完成区域全覆盖任务的设备路径设计;②用于学习和理解A星算法在实际路径规划中的扩展应用,特别是如何结合特定搜索策略(如螺旋)提升算法性能;③作为科研复现与算法对比实验的基础代码参考。; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注A星算法与螺旋策略的切换逻辑与条件判断,并可通过修改地图环境、障碍物分布等方式进行仿真实验,进一步掌握算法适应性与优化方向。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值