Exponential Fitting

本文介绍了一种使用Python来拟合指数函数的方法。通过定义指数函数并生成数据集,利用多项式拟合找到最佳指数函数参数,进而预测未知数据点。文章展示了如何绘制原始数据与预测值之间的对比图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# quote from 'introduction to computation and programming     
# using Python, revised, MIT press 
import pylab
import math

#define an arbitrary exponential function
def f(x):
    return 3*(2**(1.2*x))
    
def createExpData(f, xVals):
    """assumes f is an exponential function of one argument
               xVals is an array of suitable arguments for f
       Returns array containing results of applying f to the 
               elements of xVals"""
    yVals = []
    for i in range(len(xVals)):
        yVals.append(f(xVals[i]))
    return pylab.array(xVals), pylab.array(yVals)
    
def fitExpData(xVals, yVals):
    """Assumes xVals and yVals arrays of numbers such that
         yVals[i] == f(xVals[i])
       Returns a,b, base such that log(f(x), base) == ax + b"""
    logVals = []
    for y in yVals:
        logVals.append(math.log(y, 2.0)) #get log base 2
    a, b = pylab.polyfit(xVals, logVals, 1)
    return a,b,2.0
    
xVals, yVals = createExpData(f, range(10))
pylab.plot(xVals, yVals, 'ro', label = 'Actual values')
a, b, base = fitExpData(xVals, yVals)
predictedYVals = []
for x in xVals:
    predictedYVals.append(base**(a*x + b))
pylab.plot(xVals, predictedYVals, label = 'Predicted values')
pylab.title('Fitting an Exponential Function')
pylab.legend()
#Look at a value for x not in original data
print 'f(20) = ', f(20)
print 'Predicted f(20) =', base**(a*20 + b)
pylab.show()

内容概要:本文针对国内加密货币市场预测研究较少的现状,采用BP神经网络构建了CCi30指数预测模型。研究选取2018年3月1日至2019年3月26日共391天的数据作为样本,通过“试凑法”确定最优隐结点数目,建立三层BP神经网络模型对CCi30指数收盘价进行预测。论文详细介绍了数据预处理、模型构建、训练及评估过程,包括数据归一化、特征工程、模型架构设计(如输入层、隐藏层、输出层)、模型编译与训练、模型评估(如RMSE、MAE计算)以及结果可视化。研究表明,该模型在短期内能较准确地预测指数变化趋势。此外,文章还讨论了隐层节点数的优化方法及其对预测性能的影响,并提出了若干改进建议,如引入更多技术指标、优化模型架构、尝试其他时序模型等。 适合人群:对加密货币市场预测感兴趣的研究人员、投资者及具备一定编程基础的数据分析师。 使用场景及目标:①为加密货币市场投资者提供一种新的预测工具和方法;②帮助研究人员理解BP神经网络在时间序列预测中的应用;③为后续研究提供改进方向,如数据增强、模型优化、特征工程等。 其他说明:尽管该模型在短期内表现出良好的预测性能,但仍存在一定局限性,如样本量较小、未考虑外部因素影响等。因此,在实际应用中需谨慎对待模型预测结果,并结合其他分析工具共同决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值