CalTech machine learning video 5 note , training vs. testing

本文探讨了机器学习中训练集与测试集的概念及其应用。重点介绍了如何通过替换关键参数M来改进模型评估,并讨论了使用增长函数衡量假设集能力的重要性。此外,文中还解释了‘破碎点’的概念及其在评估假设集复杂度方面的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

start CalTech machine learning, video 5


training vs testing


7:14 2014-09-23
training => testing


7:44 2014-09-23
key notion: break point


7:45 2014-09-23
final examination: training => testing


7:47 2014-09-23
this guarantee is not a guarantee at all:


M is too big!


7:55 2014-09-23
they could be independent which means they


could be proportionally overlapping


7:59 2014-09-23
where did the M come from?


7:59 2014-09-23
the overlap is so significant


8:00 2014-09-23
can we improve on M?


bad events are very overlapping


8:06 2014-09-23
Ein  // in-sample error


8:12 2014-09-23
What are we going to replace with?


8:13 2014-09-23
What can we replace M with?


8:15 2014-09-23
input space


8:15 2014-09-23
the count should reflect the strength


of the hypothesis set.


8:18 2014-09-23
dichotomies  // dichotomy


8:19 2014-09-23
Dichotomies: mini-hypotheses


8:23 2014-09-23
dichotomies are also hypotheses, but the domain


are not the full input space, just a few points


8:24 2014-09-23
why dichotomies?


#hypotheses |H| can be infinite,


#dichotomies can be FINITE


8:28 2014-09-23
the growth function:


the growth function counts the most dichotomies


8:30 2014-09-23
I give you the N budgts, you choose where to 


put the points


8:31 2014-09-23
mH(N) // growth functions


counts the most number of dichotomies


8:36 2014-09-23
perceptron dichotomy


8:38 2014-09-23
positive rays


8:46 2014-09-23
positive intervals


9:01 2014-09-23
can we shatter this set?


9:13 2014-09-23
What we're trying to do is to replace M.


replace M by mH(N)


9:15 2014-09-23
once you declare that the hypotheses set


has a polynomial growth function, we can


declare that learning is feasible using that 


hypotheses set.


9:18 2014-09-23
growth function is polynomial => good // learning is feasible


9:19 2014-09-23
with probability assurance


9:19 2014-09-23
key point: break point


9:20 2014-09-23
break point of H: // break point of a hypothses set


Definition:


If no data set of size k can be shattered by H.


then k is a break point for H.


9:22 2014-09-23
just view "break point" as the capability of H(hypothese set)


9:22 2014-09-23
"data set" can be "shattered" by "hypotheses set"


9:23 2014-09-23
main results:


no break point => exp(2, n)


any break point => polynomial


9:31 2014-09-23
this is a remarkable result
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值