秦人不暇自哀,而后人哀之;后人哀之而不鉴之,亦使后人而复哀后人也! –论面向文档编程的重要性
如果想看见识一个人写代码的功力,注释其实是区分老司机和小鲜肉的一个显著的分界线(有没有观察到你们公司的领导基本都在开会或者写文档),通常情况下老司机的文档量与代码量是1:1的比例,而新人往往认为写完功能模块就已经可以完成任务了。生产环境中需要面对现实中大量复杂的业务逻辑和数据校验并与各方对接,文档质量和代码质量就被提升到了相同的高度。很多人没有写注释的习惯,大多数不是因为懒惰,一方面是没有意识到写文档的好处,另一方面是不了解这方面的工具。毕竟从管理上依赖于人的主动性是远不如依赖于工具有效的。本文介绍如何利用Python注释提升文档书写的质量以及效率的小技巧。
Python
在实际生产中,机器学习工作现在看起来,白天像是个算法工程师的活,晚上就变成运维+测试了。Python 一直以来也都受到测试工程师和运维工程师的偏爱,下面是几个经典的注释活用case。
用注释写单元测试:doctest
单元测试是代码开发环节必不可少的一环,对于Bug定位和代码质量而言是非常重要的。现在最广为人知的单元测试框架就是Unittest,它借鉴了Java中成熟的单元测试框架的JUnit。即使像Django还对这个框架有特殊的支持,然而在实现Unittest的时候会感觉确实比较啰嗦,setup,teardown…在维护单元测试的时候很多时候感觉力不从心。
一个巧妙的方式可以是通过doctest,用docstring注释的方式来完成单元测试,由于每个方法def下面都先跟着一段测试用例,然后紧跟着就是代码正文,这样一来很方便我们测试现有代码的质量,另一方面又便于修改。
举个例子:
def factorial(n):
"""Return the factorial of n, an exact integer >= 0.
>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> factorial(30)
265252859812191058636308480000000
>>> factorial(-1)
Traceback (most recent call last):
...
ValueError: n must be >= 0
Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):
...
ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000
It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):
...
OverflowError: n too large
"""
import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")
if