Public Bike Management (30)(dfs)

本文探讨了杭州公共自行车服务的调度算法,旨在通过调整各站点的自行车数量,确保所有站点处于理想状态。通过深度优先搜索算法,寻找从调度中心到问题站点的最短路径,同时考虑搬运和回收自行车的效率。

链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f
来源:牛客网

There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.
The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.
When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.

Figure 1
Figure 1 illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3 , we have 2 different shortest paths:

  1. PBMC -> S1 -> S3 . In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3 , so that both stations will be in perfect conditions.
  2. PBMC -> S2 -> S3 . This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.
    输入描述:

Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (<= 100), always an even number, is the maximum capacity of each station; N (<= 500), the total number of stations; Sp, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci (i=1,…N) where each Ci is the current number of bikes at Si respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and Tij which describe the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.

输出描述:

For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0->S1->…->Sp. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of Sp is adjusted to perfect.
Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge’s data guarantee that such a path is unique.
示例1
输入

10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1
输出

3 0->2->3 0

翻译:
大概就是:给一个无向图,每个节点无camx的一半,求从起点到终点所经历时间最短,从初始点搬运的车最少,返回的车最少的一条路
思路:
这道题我们要求最短路,看看数据其实不用迪杰斯特拉,我们直接暴力搜记录路径即可。

#include <iostream>
#include <vector>
#include <limits.h>
  
using namespace std;
  
void dfs(int start, int index, int end);
  
int cmax, N, sp, M;
int costTimes, outBikes, inBikes;
int resultTimes = INT_MAX;
int resultOutBikes, resultInBikes;
vector<int> bikes, path, resultPath;
vector<vector<int> > times;
vector<bool> visited;
  
int main()
 
{
    ios::sync_with_stdio(false);
    // 输入数据
    cin >> cmax >> N >> sp >> M;
    bikes.resize(N+1, 0);
    visited.resize(N+1, false);
    times.resize(N+1, vector<int>(N+1, 0));
    for(int i=1; i<=N; i++) {
        cin >> bikes[i];
    }
    int m, n, dist;
    for(int i=0; i<M; i++) {
        cin >> m >> n >> dist;
        times[m][n] = dist;
        times[n][m] = dist;
    }
  
    // 深搜并输出结果
    dfs(0, 0, sp);
    cout << resultOutBikes << " 0";
    for(int i=1; i<resultPath.size(); i++) {
        cout << "->" << resultPath[i];
    }
    cout << " " << resultInBikes;
  
    return 0;
}
  
void dfs(int start, int index, int end)
{
    // 先对这个点标记一下
    visited[index] = true;
    path.push_back(index);
    costTimes += times[start][index];
  
    // 处理
    if(index == end) {
        // 计算这条路上带去的车和带回的车
        inBikes = 0, outBikes = 0;
        for(int i=1; i<path.size(); i++) {
            //如果这个结点多了就多了加入inbikes
            if(bikes[path[i]] > cmax/2) {
                inBikes += bikes[path[i]] -cmax/2;
            } else {
                if((cmax/2 - bikes[path[i]]) < inBikes) {
                    //如果这个结点少了,但是少的数量可以从前面inbikes拿到就减少inbikes
                    inBikes -= (cmax/2 - bikes[path[i]]);
                } else {//如果前面inbikes不够就从起点拿
                    outBikes += (cmax/2 - bikes[path[i]]) - inBikes;
                    inBikes = 0;
                }
            }
        }
        // 判断这条路是否更好,如果时间最短就ok了
        if(costTimes != resultTimes) {
            if(costTimes < resultTimes) {
                resultTimes = costTimes;
                resultPath = path;
                resultOutBikes = outBikes;
                resultInBikes = inBikes;
            }//如果时间相同,丢出的最少就ok
        } else if(outBikes != resultOutBikes) {
            if(outBikes < resultOutBikes) {
                resultPath = path;
                resultOutBikes = outBikes;
                resultInBikes = inBikes;
            }//如果丢出也相同就求最小的丢入
        } else if(inBikes < resultInBikes) {
            resultPath = path;
            resultOutBikes = outBikes;
            resultInBikes = inBikes;
        }
    } else {
        // 递归,遍历他下一个节点,如果没有被访问并且有路就遍历
        for(int i=1; i<=N; i++) {
            if(times[index][i] != 0 && !visited[i]) {
                dfs(index, i, end);
            }
        }
    }
  
    // 回溯,另外选一个分支遍历
    visited[index] = false;
    path.pop_back();
    costTimes -= times[start][index];
}
源码来自:https://pan.quark.cn/s/a4b39357ea24 ### 操作指南:洗衣机使用方法详解#### 1. 启动与水量设定- **使用方法**:使用者必须首先按下洗衣设备上的“启动”按键,同时依据衣物数量设定相应的“水量选择”旋钮(高、中或低水量)。这一步骤是洗衣机运行程序的开端。- **运作机制**:一旦“启动”按键被触发,洗衣设备内部的控制系统便会启动,通过感应器识别水量选择旋钮的位置,进而确定所需的水量高度。- **技术执行**:在当代洗衣设备中,这一流程一般由微处理器掌管,借助电磁阀调控进水量,直至达到指定的高度。#### 2. 进水过程- **使用说明**:启动后,洗衣设备开始进水,直至达到所选的水位(高、中或低)。- **技术参数**:水量的监测通常采用浮子式水量控制器或压力感应器来实现。当水位达到预定值时,进水阀会自动关闭,停止进水。- **使用提醒**:务必确保水龙头已开启,并检查水管连接是否牢固,以防止漏水。#### 3. 清洗过程- **使用步骤**:2秒后,洗衣设备进入清洗环节。在此期间,滚筒会执行一系列正转和反转的动作: - 正转25秒 - 暂停3秒 - 反转25秒 - 再次暂停3秒- **重复次数**:这一系列动作将重复执行5次,总耗时为280秒。- **技术关键**:清洗环节通过电机驱动滚筒旋转,利用水流冲击力和洗衣液的化学效果,清除衣物上的污垢。#### 4. 排水与甩干- **使用步骤**:清洗结束后,洗衣设备会自动进行排水,将污水排出,然后进入甩干阶段,甩干时间为30秒。- **技术应用**:排水是通过泵将水抽出洗衣设备;甩干则是通过高速旋转滚筒,利用离心力去除衣物上的水分。- **使用提醒**:...
代码下载地址: https://pan.quark.cn/s/c289368a8f5c 在安卓应用开发领域,构建一个高效且用户友好的聊天系统是一项核心任务。 为了协助开发者们迅速达成这一目标,本文将分析几种常见的安卓聊天框架,并深入说明它们的功能特性、应用方法及主要优势。 1. **环信(Easemob)** 环信是一个专为移动应用打造的即时通讯软件开发套件,涵盖了文本、图片、语音、视频等多种消息形式。 通过整合环信SDK,开发者能够迅速构建自身的聊天平台。 环信支持消息内容的个性化定制,能够应对各种复杂的应用场景,并提供多样的API接口供开发者使用。 2. **融云(RongCloud)** 融云作为国内领先的IM云服务企业,提供了全面的聊天解决方案,包括一对一交流、多人群聊、聊天空间等。 融云的突出之处在于其稳定运行和高并发处理性能,以及功能完备的后台管理工具,便于开发者执行用户管理、消息发布等操作。 再者,融云支持多种消息格式,如位置信息、文件传输、表情符号等,显著增强了用户聊天体验。 3. **Firebase Cloud Messaging(FCM)** FCM由Google提供的云端消息传递服务,可达成安卓设备与服务器之间的即时数据交换。 虽然FCM主要应用于消息推送,但配合Firebase Realtime Database或Firestore数据库,开发者可以开发基础的聊天软件。 FCM的显著优势在于其全球性的推送网络,保障了消息能够及时且精确地传输至用户。 4. **JMessage(极光推送)** 极光推送是一款提供消息发布服务的软件开发工具包,同时具备基础的即时通讯能力。 除了常规的文字、图片信息外,极光推送还支持个性化消息,使得开发者能够实现更为复杂的聊天功能。 此...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值