PASCAL VOC2012 数据集 Dataset

本文介绍了PASCAL VOC2012数据集,这是一个广泛用于目标检测任务的资料集。内容包括数据集的结构、用途及如何在深度学习项目中应用,特别参考了WZMIAOMIAO/deep-learning-for-image-processing的PyTorch目标检测项目。
部署运行你感兴趣的模型镜像

学习笔记:数据集Dataset

参考:deep-learning-for-image-processing/pytorch_object_detection/yolov3_spp at master · WZMIAOMIAO/deep-learning-for-image-processing · GitHub

代码:datasets.py

import math
import os
import shutil
import random
from pathlib import Path

import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
from PIL import Image, ExifTags
from tqdm import tqdm

from build_utils.utils import xyxy2xywh, xywh2xyxy

help_url = 'https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data'
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng']  # 支持的图片格式

# get orientation in exif tag
# 找到图像exif信息中对应旋转信息的key值
for orientation in ExifTags.TAGS.keys():
    if ExifTags.TAGS[orientation] == "Orientation":
        break


def exif_size(img):
    """
    获取图像的原始img size
    通过exif的orientation信息判断图像是否有旋转,如果有旋转则返回旋转前的size
    :param img: PIL图片
    """
    s = img.size  # (w, h)
    try:
        rotation = dict(img._getexif().items())[orientation]
        if rotation == 6:  # rotation 270  顺时针翻转90度
            s = (s[1], s[0])
        elif rotation == 8:  # ratation 90  逆时针翻转90度
            s = (s[1], s[0])
    except:
        pass  # 如果图像的exif信息中没有旋转信息,则跳过

    return s


class LoadImagesAndLabels(Dataset):
    def __init__(self, path, img_size, batch_size, augment=False, hyp=None, rect=False, cache_images=False,
                 single_cls=False,
                 pad=0.0, rank=-1):
        """
        path:     data / my_train_data.txt路径 或 data/my_val_data.txt路径
        argment:  训练集设置为True(augment_hsv),验证集设置为False
        hpy:      超参数字典
        rect:     是否使用rectangular training
        cache_images: 是否缓存图片到内存中
        """
        try:
            path = str(Path(path))
            if os.path.isfile(path):
                with open(path, 'r') as r:
                    f = r.read().splitlines()
            else:
                raise Exception("%s does not exist" % path)

            self.img_files = [x for x in f if os.path.splitext(x)[-1].lower() in img_formats]  # 是支持的图片格式
            self.img_files.sort()  # 防止不同系统排序不同,导致shape文件出现差异
        except Exception as e:
            raise FileNotFoundError("error...")

        n = len(self.img_files)
        assert n > 0, "not image in self.img_files"

        # 按照 batch_size 划分batch
        bi = np.floor(np.arange(n) / batch_size).astype(np.int)
        nb = bi[-1] + 1  # number of batch

        self.n = n  # 图像总数
        self.batch = bi  # 记录哪些图片属于哪个batch
        self.img_size = img_size
        self.augment = augment  # 是否启用augment_hsv
        self.hyp = hyp  # 超参数字典
        self.rect = rect  # 是否使用rectangular training
        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)

        # 遍历设置图像对应的label路径
        # (./my_yolo_dataset/train/images/2009_004012.jpg) -> (./my_yolo_dataset/train/labels/2009_004012.txt)
        self.label_files = [x.replace("images", "labels").replace(os.path.splitext(x)[-1], ".txt")
                            for x in self.img_files]

        # 查看data文件下是否缓存有对应数据集的.shapes文件,里面存储了每张图像的width, height
        sp = path.replace(".txt", ".shape")
        try:
            with open(sp, "r") as f:
                s = [x.split() for x in f.read().splitlines()]
                assert len(s) == n, "shapefile out of aync"  # shape文件中的行数 应该与 图像个数对应
        except Exception as e:
            # 读取每张图片的size信息
            if rank in [-1, 0]:
                image_files = tqdm(self.img_files, desc='Reading image shapes')
            else:
                image_files = self.img_files
            s = [exif_size(Image.open(f)) for f in image_files]
            np.savetxt(sp, s, fmt="%g")  # 将所有图片的shape信息保存在.shape文件中

        self.shapes = np.array(s, dtype=np.float64)

        if self.rect:
            # 如果为ture,训练网络时,会使用类似原图像比例的矩形(让最长边为img_size),而不是img_size x img_size
            s = self.shapes  # wh
            # 计算每个图片的高/宽比
            ar = s[:, 1] / s[:, 0]  # aspect ratio
            # argsort函数返回的是数组值从小到大的索引值
            # 按照高宽比例进行排序,这样后面划分的每个batch中的图像就拥有类似的高宽比
            irect = ar.argsort()
            # 根据排序后的顺序重新设置图像顺序、标签顺序以及shape顺序
            self.img_files = [self.img_files[i] for i in irect]
            self.label_files = [self.label_files[i] for i in irect]
            self.shapes = s[irect]  # wh
            ar = ar[irect]

            # set training image shapes
            # 计算每个batch采用的统一尺度
            shapes = [[1, 1]] * nb  # nb: number of batches
            for i in range(nb):
                ari = ar[bi == i]  # bi: batch index
                # 获取第i个batch中,最小和最大高宽比
                mini, maxi = ari.min(), ari.max()

                # 如果高/宽小于1(w > h),将w设为img_size
                if maxi < 1:
                    shapes[i] = [maxi, 1]
                # 如果高/宽大于1(w < h),将h设置为img_size
                elif mini > 1:
                    shapes[i] = [1, 1 / mini]
            # 计算每个batch输入网络的shape值(向上设置为32的整数倍)
            self.batch_shapes = np.ceil(np.array(shapes) * img_size / 32. + pad).astype(np.int) * 32
        # cache labels
        self.imgs = [None] * n  # n为图像总数
        # label: [class, x, y, w, h] 其中的xywh都为相对值
        self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
        extract_bounding_boxes, labels_loaded = False, False
        nm, nf, ne, nd = 0, 0, 0, 0  # number mission, found, empty, duplicate
        # 这里分别命名是为了防止出现rect为False/True时混用导致计算的mAP错误
        # 当rect为True时会对self.images和self.labels进行从新排序
        if rect is True:
            np_labels_path = str(Path(self.label_files[0]).parent) + ".rect.npy"  # saved labels in *.npy file
        else:
            np_labels_path = str(Path(self.label_files[0]).parent) + ".norect.npy"

        if os.path.isfile(np_labels_path):
            x = np.load(np_labels_path, allow_pickle=True)
            if len(x) == n:
                # 如果载入的缓存标签个数与当前计算的图像数目相同则认为是同一数据集,直接读缓存
                self.labels = x
                labels_loaded = True

        # 处理进度条只在第一个进程中显示
        if rank in [-1, 0]:
            pbar = tqdm(self.label_files)
        else:
            pbar = self.label_files

        # 遍历载入标签文件
        for i, file in enumerate(pbar):
            if labels_loaded is True:
                # 如果存在缓存直接从缓存读取
                l = self.labels[i]
            else:
                # 从文件读取标签信息
                try:
                    with open(file, "r") as f:
                        # 读取每一行label,并按空格划分数据
                        l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
                except Exception as e:
                    print("An error occurred while loading the file {}: {}".format(file, e))
                    nm += 1  # file missing
                    continue

            # 如果标注信息不为空的话
            if l.shape[0]:
                # 标签信息每行必须是五个值[class, x, y, w, h]
                assert l.shape[1] == 5, "> 5 label columns: %s" % file
                assert (l >= 0).all(), "negative labels: %s" % file
                assert (l[:, 1:] <= 1).all(), "non-normalized or out of bounds coordinate labels: %s" % file

                # 检查每一行,看是否有重复信息
                if np.unique(l, axis=0).shape[0] < l.shape[0]:  # duplicate rows
                    nd += 1
                if single_cls:
                    l[:, 0] = 0  # force dataset into single-class mode

                self.labels[i] = l
                nf += 1  # file found

                # Extract object detection boxes for a second stage classifier
                if extract_bounding_boxes:
                    p = Path(self.img_files[i])
                    img = cv2.imread(str(p))
                    h, w = img.shape[:2]
                    for j, x in enumerate(l):
                        f = "%s%sclassifier%s%g_%g_%s" % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
                        if not os.path.exists(Path(f).parent):
                            os.makedirs(Path(f).parent)  # make new output folder

                        # 将相对坐标转为绝对坐标
                        # b: x, y, w, h
                        b = x[1:] * [w, h, w, h]  # box
                        # 将宽和高设置为宽和高中的最大值
                        b[2:] = b[2:].max()  # rectangle to square
                        # 放大裁剪目标的宽高
                        b[2:] = b[2:] * 1.3 + 30  # pad
                        # 将坐标格式从 x,y,w,h -> xmin,ymin,xmax,ymax
                        b = xywh2xyxy(b.reshape(-1, 4)).revel().astype(np.int)

                        # 裁剪bbox坐标到图片内
                        b[[0, 2]] = np.clip[b[[0, 2]], 0, w]
                        b[[1, 3]] = np.clip[b[[1, 3]], 0, h]
                        assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), "Failure extracting classifier boxes"
            else:
                ne += 1  # file empty

            # 处理进度条只在第一个进程中显示
            if rank in [-1, 0]:
                # 更新进度条描述信息
                pbar.desc = "Caching labels (%g found, %g missing, %g empty, %g duplicate, for %g images)" % (
                    nf, nm, ne, nd, n)
        assert nf > 0, "No labels found in %s." % os.path.dirname(self.label_files[0]) + os.sep

        # 如果标签信息没有被保存成numpy的格式,且训练样本数大于1000则将标签信息保存成numpy的格式
        if not labels_loaded and n > 1000:
            print("Saving labels to %s for faster future loading" % np_labels_path)
            np.save(np_labels_path, self.labels)  # save for next time

        # Cache images into memory for faster training (Warning: large datasets may exceed system RAM)
        if cache_images:  # if training
            gb = 0  # Gigabytes of cached images 用于记录缓存图像占用RAM大小
            if rank in [-1, 0]:
                pbar = tqdm(range(len(self.img_files)), desc="Caching images")
            else:
                pbar = range(len(self.img_files))

            self.img_hw0, self.img_hw = [None] * n, [None] * n
            for i in pbar:  # max 10k images
                self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i)  # img, hw_original, hw_resized
                gb += self.imgs[i].nbytes  # 用于记录缓存图像占用RAM大小
                if rank in [-1, 0]:
                    pbar.desc = "Caching images (%.1fGB)" % (gb / 1E9)

        # Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3
        detect_corrupted_images = False  # 没用:遍历图片看路径是否有错
        if detect_corrupted_images:
            from skimage import io  # conda install -c conda-forge scikit-image
            for file in tqdm(self.img_files, desc="Detecting corrupted images"):
                try:
                    _ = io.imread(file)
                except Exception as e:
                    print("Corrupted image detected: {}, {}".format(file, e))

    def __len__(self):
        return len(self.img_files)

    def __getitem__(self, index):
        hyp = self.hyp
        if self.mosaic:
            # load mosaic
            img, labels = load_mosaic(self, index)
            shapes = None
        else:
            # load image
            img, (h0, w0), (h, w) = load_image(self, index)

            # letterbox
            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
            img, ratio, pad = letterbox(img, shape, auto=False, scale_up=self.augment)
            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling

            # load labels
            labels = []
            x = self.labels[index]
            if x.size > 0:
                # Normalized xywh to pixel xyxy format
                labels = x.copy()  # label: class, x, y, w, h
                labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0]  # pad width
                labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1]  # pad height
                labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
                labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]

        if self.augment:
            # Augment imagespace
            if not self.mosaic:
                img, labels = random_affine(img, labels,
                                            degrees=hyp["degrees"],
                                            translate=hyp["translate"],
                                            scale=hyp["scale"],
                                            shear=hyp["shear"])

            # Augment colorspace
            augment_hsv(img, h_gain=hyp["hsv_h"], s_gain=hyp["hsv_s"], v_gain=hyp["hsv_v"])

        nL = len(labels)  # number of labels
        if nL:
            # convert xyxy to xywh
            labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])

            # Normalize coordinates 0-1
            labels[:, [2, 4]] /= img.shape[0]  # height
            labels[:, [1, 3]] /= img.shape[1]  # width

        if self.augment:
            # random left-right flip
            lr_flip = True  # 随机水平翻转
            if lr_flip and random.random() < 0.5:
                img = np.fliplr(img)
                if nL:
                    labels[:, 1] = 1 - labels[:, 1]  # 1 - x_center

            # random up-down flip
            ud_flip = False
            if ud_flip and random.random() < 0.5:
                img = np.flipud(img)
                if nL:
                    labels[:, 2] = 1 - labels[:, 2]  # 1 - y_center

        labels_out = torch.zeros((nL, 6))  # nL: number of labels
        if nL:
            labels_out[:, 1:] = torch.from_numpy(labels)

        # Convert BGR to RGB, and HWC to CHW(3x512x512)
        img = img[:, :, ::-1].transpose(2, 0, 1)
        img = np.ascontiguousarray(img)

        return torch.from_numpy(img), labels_out, self.img_files[index], shapes, index

    def coco_index(self, index):
        """该方法是专门为cocotools统计标签信息准备,不对图像和标签作任何处理"""
        o_shapes = self.shapes[index][::-1]  # wh to hw

        # load labels
        x = self.labels[index]
        labels = x.copy()  # label: class, x, y, w, h
        return torch.from_numpy(labels), o_shapes

    @staticmethod
    def collate_fn(batch):
        img, label, path, shapes, index = zip(*batch)  # transposed
        for i, l in enumerate(label):
            l[:, 0] = i  # add target image index for build_targets()
        return torch.stack(img, 0), torch.cat(label, 0), path, shapes, index

def load_image(self, index):
    # loads 1 image from dataset, returns img, original hw, resized hw
    img = self.imgs[index]
    if img is None:  # not cached
        path = self.img_files[index]
        img = cv2.imread(path)  # BGR
        assert img is not None, "Image Not Found " + path
        h0, w0 = img.shape[:2]  # orig hw
        # img_size 设置的是预处理后输出的图片尺寸
        r = self.img_size / max(h0, w0)  # resize image to img_size
        if r != 1:  # if sizes are not equal
            interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
            img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
        return img, (h0, w0), img.shape[:2]  # img, hw_original, hw_resized
    else:
        return self.imgs[index], self.img_hw0[index], self.img_hw[index]  # img, hw_original, hw_resized

def load_mosaic(self, index):
    """
    将四张图片拼接在一张马赛克图像中
    :param self:
    :param index: 需要获取的图像索引
    :return:
    """
    # loads images in a mosaic

    labels4 = []  # 拼接图像的label信息
    s = self.img_size
    # 随机初始化拼接图像的中心点坐标
    xc, yc = [int(random.uniform(s * 0.5, s * 1.5)) for _ in range(2)]  # mosaic center x, y
    # 从dataset中随机寻找三张图像进行拼接
    indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)]  # 3 additional image indices
    # 遍历四张图像进行拼接
    for i, index in enumerate(indices):
        # load image
        img, _, (h, w) = load_image(self, index)

        # place img in img4
        if i == 0:  # top left
            # 创建马赛克图像
            img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
            # 计算马赛克图像中的坐标信息(将图像填充到马赛克图像中)
            x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
            # 计算截取的图像区域信息(以xc,yc为第一张图像的右下角坐标填充到马赛克图像中,丢弃越界的区域)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
        elif i == 1:  # top right
            # 计算马赛克图像中的坐标信息(将图像填充到马赛克图像中)
            x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
            # 计算截取的图像区域信息(以xc,yc为第二张图像的左下角坐标填充到马赛克图像中,丢弃越界的区域)
            x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
        elif i == 2:  # bottom left
            # 计算马赛克图像中的坐标信息(将图像填充到马赛克图像中)
            x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
            # 计算截取的图像区域信息(以xc,yc为第三张图像的右上角坐标填充到马赛克图像中,丢弃越界的区域)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
        elif i == 3:  # bottom right
            # 计算马赛克图像中的坐标信息(将图像填充到马赛克图像中)
            x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
            # 计算截取的图像区域信息(以xc,yc为第四张图像的左上角坐标填充到马赛克图像中,丢弃越界的区域)
            x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

        # 将截取的图像区域填充到马赛克图像的相应位置
        img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
        # 计算pad(图像边界与马赛克边界的距离,越界的情况为负值)
        padw = x1a - x1b
        padh = y1a - y1b

        # Labels 获取对应拼接图像的labels信息
        # [class_index, x_center, y_center, w, h]
        x = self.labels[index]
        labels = x.copy()  # 深拷贝,防止修改原数据
        if x.size > 0:  # Normalized xywh to pixel xyxy format
            # 计算标注数据在马赛克图像中的坐标(绝对坐标)
            labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw  # xmin
            labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh  # ymin
            labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw  # xmax
            labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh  # ymax
        labels4.append(labels)

    # Concat/clip labels
    if len(labels4):
        labels4 = np.concatenate(labels4, 0)
        # 设置上下限防止越界
        np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:])  # use with random_affine

    # Augment
    # 随机旋转,缩放,平移以及错切
    img4, labels4 = random_affine(img4, labels4,
                                  degrees=self.hyp['degrees'],
                                  translate=self.hyp['translate'],
                                  scale=self.hyp['scale'],
                                  shear=self.hyp['shear'],
                                  border=-s // 2)  # border to remove

    return img4, labels4

def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=0):
    """随机旋转,缩放,平移以及错切"""
    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
    # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
    # 这里可以参考我写的博文: https://blog.youkuaiyun.com/qq_37541097/article/details/119420860
    # targets = [cls, xyxy]

    # 最终输出的图像尺寸,等于img4.shape / 2
    height = img.shape[0] + border * 2
    width = img.shape[1] + border * 2

    # Rotation and Scale
    # 生成旋转以及缩放矩阵
    R = np.eye(3)  # 生成对角阵
    a = random.uniform(-degrees, degrees)  # 随机旋转角度
    s = random.uniform(1 - scale, 1 + scale)  # 随机缩放因子
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)

    # Translation
    # 生成平移矩阵
    T = np.eye(3)
    T[0, 2] = random.uniform(-translate, translate) * img.shape[0] + border  # x translation (pixels)
    T[1, 2] = random.uniform(-translate, translate) * img.shape[1] + border  # y translation (pixels)

    # Shear
    # 生成错切矩阵
    S = np.eye(3)
    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)

    # Combined rotation matrix
    M = S @ T @ R  # ORDER IS IMPORTANT HERE!!
    if (border != 0) or (M != np.eye(3)).any():  # image changed
        # 进行仿射变化
        img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=(114, 114, 114))

    # Transform label coordinates
    n = len(targets)
    if n:
        # warp points
        xy = np.ones((n * 4, 3))
        xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
        # [4*n, 3] -> [n, 8]
        xy = (xy @ M.T)[:, :2].reshape(n, 8)

        # create new boxes
        # 对transform后的bbox进行修正(假设变换后的bbox变成了菱形,此时要修正成矩形)
        x = xy[:, [0, 2, 4, 6]]  # [n, 4]
        y = xy[:, [1, 3, 5, 7]]  # [n, 4]
        xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T  # [n, 4]

        # reject warped points outside of image
        # 对坐标进行裁剪,防止越界
        xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
        xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
        w = xy[:, 2] - xy[:, 0]
        h = xy[:, 3] - xy[:, 1]

        # 计算调整后的每个box的面积
        area = w * h
        # 计算调整前的每个box的面积
        area0 = (targets[:, 3] - targets[:, 1]) * (targets[:, 4] - targets[:, 2])
        # 计算每个box的比例
        ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16))  # aspect ratio
        # 选取长宽大于4个像素,且调整前后面积比例大于0.2,且比例小于10的box
        i = (w > 4) & (h > 4) & (area / (area0 * s + 1e-16) > 0.2) & (ar < 10)

        targets = targets[i]
        targets[:, 1:5] = xy[i]

    return img, targets

def augment_hsv(img, h_gain=0.5, s_gain=0.5, v_gain=0.5):
    # 这里可以参考我写的博文:https://blog.youkuaiyun.com/qq_37541097/article/details/119478023
    r = np.random.uniform(-1, 1, 3) * [h_gain, s_gain, v_gain] + 1  # random gains
    hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
    dtype = img.dtype  # uint8

    x = np.arange(0, 256, dtype=np.int16)
    lut_hue = ((x * r[0]) % 180).astype(dtype)
    lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
    lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

    img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
    cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed

def letterbox(img: np.ndarray,
              new_shape=(416, 416),
              color=(114, 114, 114),
              auto=True,
              scale_fill=False,
              scale_up=True):

    """
    将图片缩放调整到指定大小
    :param img:
    :param new_shape:
    :param color:
    :param auto:
    :param scale_fill:
    :param scale_up:
    :return:
    """

    shape = img.shape[:2]  # [h, w]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scale_up:  # only scale down, do not scale up (for better test mAP) 对于大于指定输入大小的图片进行缩放,小于的不变
        r = min(r, 1.0)

    # compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimun rectangle 保证原图比例不变,将图像最大边缩放到指定大小
        # 这里的取余操作可以保证padding后的图片是32的整数倍
        dw, dh = np.mod(dw, 32), np.mod(dh, 32)  # wh padding
    elif scale_fill:  # stretch 简单粗暴的将图片缩放到指定尺寸
        dw, dh = 0, 0
        new_unpad = new_shape
        ratio = new_shape[0] / shape[1], new_shape[1] / shape[0]  # wh ratios

    dw /= 2  # divide padding into 2 sides 将padding分到上下,左右两侧
    dh /= 2

    # shape:[h, w]  new_unpad:[w, h]
    if shape[::-1] != new_unpad:
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))  # 计算上下两侧的padding
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))  # 计算左右两侧的padding

    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return img, ratio, (dw, dh)

def create_folder(path="./new_folder"):
    # Create floder
    if os.path.exists(path):
        shutil.rmtree(path)  # dalete output folder
    os.makedirs(path)  # make new output folder

您可能感兴趣的与本文相关的镜像

PyTorch 2.7

PyTorch 2.7

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值