Pow(x, n)
Implement pow(x, n).
算法思想:
递归TLE,
二分法:
class Solution {
public:
double pow(double x, int n) {
if(n==0)return 1.0;
if(n<0){
if(n==INT_MIN)return 1.0/(pow(x,INT_MAX)*x);
return 1.0/pow(x,-n);
}
double mid = pow(x,n>>1);
return n%2?mid*mid*x:mid*mid;
}
};
Consider the binary representation of n. For example, if it is "10001011", then x^n = x^(1+2+8+128) = x^1 * x^2 * x^8 * x^128. Thus, we don't want to loop n times to calculate x^n. To speed up, we loop through each bit, if the i-th bit is 1, then we add x^(1 << i) to the result. Since (1 << i) is a power of 2, x^(1<<(i+1)) = square(x^(1<<i)). The loop executes for a maximum of log(n) times.
class Solution {
public:
double pow(double x, int n) {
if(n==0)
return 1.0;
if(n<0)
{
if(n==INT_MIN)
return 1.0 / (pow(x,INT_MAX)*x);
return 1.0 / pow(x,-n);
}
double ans = 1.0 ;
for(;n>0; x *= x, n>>=1)
{
if(n&1)
ans *= x;
}
return ans;
}
};