三体 黑暗森林法则


三体  黑暗森林法则


文明的第一需要:生存;
第二规则:守恒定律;
第三条规则:假象定律;(博弈学的 囚徒困境);
第四个定律:技术爆炸定律;




所以,要建立时间壁垒、技术壁垒;(时间壁垒为什么重要)



在Python编程中,"运动"通常是指模拟经典的牛顿问题,这是一个物理学上的经典问题,涉及到个质点之间的引力相互作用。这种运动通常用于展示多动力学、天力学以及数值计算方法,如欧拉法或四阶Runge-Kutta方法。 要编写这样的程序,你需要了解基本的物理定律,比如牛顿第二定律F=ma,以及如何通过向量运算表达引力作用。Python提供了诸如NumPy库来处理向量和矩阵运算,Matplotlib库则可以用来可视化运动轨迹。 下面是一个简化的示例,展示了如何使用Python的基本数学模块和循环来模拟运动: ```python import numpy as np from matplotlib import pyplot as plt # 定义常数 G = 6.674e-11 # 引力常数 m1 = m2 = m3 = 1 # 质量相同的物 r0 = [1, 0, 0] # 初始位置 v0 = [0, 0, 0] # 初始速度 # 设置时间步长和总时间 dt = 0.01 total_time = 10 # 计算并更新位置和速度 def update(state, masses, G): r = state[:3] v = state[3:] forces = np.array([[-G * masses[i] / np.linalg.norm(r - rj)**3 * (r - rj) for j in range(3)] for i in range(3)]) a = forces.sum(axis=0) / masses return np.concatenate((v + dt * a, r + dt * v)) state = np.zeros(6) # 初始化状态(位置+速度) positions = [r0] # 存储所有时间点的位置 for _ in range(int(total_time / dt)): state = update(state, [m1, m2, m3], G) positions.append(state[:3]) plt.plot(*zip(*positions), 'o-') plt.xlabel('x') plt.ylabel('y') plt.title('运动模拟') plt.show() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值