100天机器学习(100-Days-Of-ML)day4,5,6提升版

本系列为100天机器学习学习笔记。详细请参考下方作者链接:
100天机器学习github:
https://github.com/MLEveryday/100-Days-Of-ML-Code

Day4,5,6–logistic regression

在这里插入图片描述
数据集 | 社交网络
在这里插入图片描述
该数据集包含了社交网络中用户的信息。这些信息涉及用户ID,性别,年龄以及预估薪资。一家汽车公司刚刚推出了他们新型的豪华SUV,我们尝试预测哪些用户会购买这种全新SUV。并且在最后一列用来表示用户是否购买。我们将建立一种模型来预测用户是否购买这种SUV,该模型基于两个变量,分别是年龄和预计薪资。因此我们的特征矩阵将是这两列。我们尝试寻找用户年龄与预估薪资之间的某种相关性,以及他是否购买SUV的决定。
接下来我会以和教程略有不同的方式解决这个问题。虽然略有改动,当然本质一样。在基础上做更多的分析。

步骤1 | 数据预处理
导入库

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

导入数据集

data = pd.read_csv("Social_Network_Ads.csv")
data[:10]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值