1-2 STM32F405--GPIO按键检测

文章详细描述了如何使用STM32F405RGT6的GPIO模块实现两个按键的检测,通过按键控制LED的切换,并利用TIM3进行10ms的按键消抖处理。还包含了GPIO初始化、按键状态管理以及TIM3中断服务函数的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

功能描述:通过STM32F405RGT6的GPIO和TIM3相配合实现无阻塞的按键检测,能够识别单击、双击(间隔小于200ms)、长按(按下大于1s)。

  •  main.c文件内容如下
#include "stm32f4xx.h"                  // Device header
#include "Key.h"
#include "Serial.h"
#include "Timer.h"

int main(void)
{
	Key_Init(KEY1 | KEY2);
	Timer_Init();
	Serial_Init();
	
	Serial_Printf(USART1, "按键测试程序\n\n");
	
	while(1)
	{
		switch (Key_GetValue(KEY1))
		{
			case KEY_CLICK:
				Serial_Printf(USART1, "按键1单击\n");
				break;
			case KEY_TWICE_CLICK:
				Serial_Printf(USART1, "按键1双击\n");
				break;
			case KEY_LONG_DOWN:
				Serial_Printf(USART1, "按键1长按\n");
				break;
			default:
				break;
		}
		switch (Key_GetValue(KEY2))
		{
			case KEY_CLICK:
				Serial_Printf(USART1, "按键2单击\n");
				break;
			case KEY_TWICE_CLICK:
				Serial_Printf(USART1, "按键2双击\n");
				break;
			case KEY_LONG_DOWN:
				Serial_Printf(USART1, "按键2长按\n");
				break;
			default:
				break;
		}
	}
}
  • Key.c文件内容如下
#include "Key.h"

uint8_t key1_state = KEY_UP, key2_state = KEY_UP;//状态记录
uint8_t key1_behavior = 0, key2_behavior = 0;	//动作记录
uint16_t key1_latest_cnt = 0, key1_tmpcnt = 0;	//时间记录
uint16_t key2_latest_cnt = 0, key2_tmpcnt = 0;	//时间记录

/**
  * @摘要  		初始化按键(初始化相应的GPIO端口)
  * @参数  		KEYx: KEYx为要初始化的按键(根据硬件定义,这里可选KEY1、KEY2及它们的组合)
  * @返回值  	无
  * @说明  		无
  */
void Key_Init(uint8_t KEYx)
{
	//开启GPIOC时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
	//定义GPIO初始化结构体
	GPIO_InitTypeDef GPIOInitStructure;
	//初始化上述结构体
	GPIO_StructInit(&GPIOInitStructure);
	//配置GPIO模式为输入模式
	GPIOInitStructure.GPIO_Mode = GPIO_Mode_IN;
	//配置GPIO输出类型为推挽输出(此处无用)
	GPIOInitStructure.GPIO_OType = GPIO_OType_PP;
	//配置GPIO输入类型为上拉输入
	GPIOInitStructure.GPIO_PuPd = GPIO_PuPd_UP;
	//配置GPIO的速度为快速50MHZ
	GPIOInitStructure.GPIO_Speed = GPIO_Fast_Speed;
	if(KEYx == (KEY1|KEY2))
	{	
		//指定GPIO引脚为Pin8和Pin9
		GPIOInitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_9;
	}
	else if(KEYx == KEY1)
	{
		//指定GPIO引脚为Pin8
		GPIOInitStructure.GPIO_Pin = GPIO_Pin_8;
	}
	else if(KEYx == KEY2)
	{
		//指定GPIO引脚为Pin9
		GPIOInitStructure.GPIO_Pin = GPIO_Pin_9;
	}
	//初始化对应的GPIO
	GPIO_Init(GPIOC, &GPIOInitStructure);
}

/**
  * @摘要  		获取按键的动作
  * @参数  		KEYx: KEYx为要读取的按键(根据硬件定义,这里可选KEY1、KEY2)
  * @返回值  	按键的动作
				0:					无动作
				KEY_CLICK:			单击
				KEY_TWICE_CLICK:	双击
				KEY_LONG_DOWN:		长按
  * @说明  		无
  */
uint8_t Key_GetValue(uint8_t KEYx)
{
	uint8_t key_behavior = 0;
	int16_t key_period = 0;
	if(KEYx == KEY1)
	{
		switch (key1_state)
		{
			case KEY_UP://按键为弹起状态
				if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_8) == Bit_RESET)
				{
					key1_state = KEY_UP2DOWN;
					key1_tmpcnt = TIM_GetCounter(TIM3);
				}
				else
				{
					if(TIM_GetCounter(TIM3) < key1_latest_cnt)
						key_period = 60000 - key1_latest_cnt + TIM_GetCounter(TIM3);
					else
						key_period = TIM_GetCounter(TIM3) - key1_latest_cnt;
					if(key_period > 500)
					{
						key_behavior = key1_behavior;
						key1_behavior = 0;
						return key_behavior;
					}
				}
				break;
			case KEY_UP2DOWN://按键为从弹起到按下的状态(按下消抖)
				if(TIM_GetCounter(TIM3) < key1_tmpcnt)
					key_period = 60000 - key1_tmpcnt + TIM_GetCounter(TIM3);
				else
					key_period = TIM_GetCounter(TIM3) - key1_tmpcnt;
				if(key_period >= 25)
				{
					if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_8) == Bit_RESET)
					{
						key1_state = KEY_DOWN;
						if(TIM_GetCounter(TIM3) < key1_latest_cnt)
							key_period = 60000 - key1_latest_cnt + TIM_GetCounter(TIM3);
						else
							key_period = TIM_GetCounter(TIM3) - key1_latest_cnt;
						if(key_period < 500)
						{
							key1_behavior = KEY_TWICE_CLICK;
						}
						else
						{
							key1_behavior = KEY_CLICK;
						}
						key1_tmpcnt = TIM_GetCounter(TIM3);
					}
					else
					{
						key1_state = KEY_UP;
					}
				}
				break;
			case KEY_DOWN://按键为按下状态
				if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_8) == Bit_RESET)
				{
					if(TIM_GetCounter(TIM3) < key1_tmpcnt)
						key_period = 60000 - key1_tmpcnt + TIM_GetCounter(TIM3);
					else
						key_period = TIM_GetCounter(TIM3) - key1_tmpcnt;
					if(key_period >= 2500)
					{
						key1_state = KEY_KEEP_DOWN;
						key1_behavior = KEY_LONG_DOWN;
					}
				}
				else
				{
					key1_state = KEY_DOWN2UP;
					key1_tmpcnt = TIM_GetCounter(TIM3);
				}
				break;
			case KEY_KEEP_DOWN://按键为持续按下状态
				if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_8) == Bit_SET)
				{
					key1_state = KEY_DOWN2UP;
					key1_tmpcnt = TIM_GetCounter(TIM3);
				}
				break;
			case KEY_DOWN2UP://按键为从按下到弹起的过程(松手消抖)
				if(TIM_GetCounter(TIM3) < key1_tmpcnt)
					key_period = 60000 - key1_tmpcnt + TIM_GetCounter(TIM3);
				else
					key_period = TIM_GetCounter(TIM3) - key1_tmpcnt;
				if(key_period >= 25)
				{
					if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_8) == Bit_SET)
					{
						key1_state = KEY_UP;
						key1_tmpcnt = TIM_GetCounter(TIM3);
						key1_latest_cnt = key1_tmpcnt;
					}
					else
					{
						if(key1_behavior == KEY_CLICK)
						{
							key1_state = KEY_DOWN;
						}
						else if(key1_behavior == KEY_LONG_DOWN)
						{
							key1_state = KEY_LONG_DOWN;
						}
					}
				}
				break;
			default:
				break;
		}
	}
	else if(KEYx == KEY2)
	{
		switch (key2_state)
		{
			case KEY_UP:
				if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_9) == Bit_RESET)
				{
					key2_state = KEY_UP2DOWN;
					key2_tmpcnt = TIM_GetCounter(TIM3);
				}
				else
				{
					if(TIM_GetCounter(TIM3) < key2_latest_cnt)
						key_period = 60000 - key2_latest_cnt + TIM_GetCounter(TIM3);
					else
						key_period = TIM_GetCounter(TIM3) - key2_latest_cnt;
					if(key_period > 500)
					{
						key_behavior = key2_behavior;
						key2_behavior = 0;
						return key_behavior;
					}
				}
				break;
			case KEY_UP2DOWN:
				if(TIM_GetCounter(TIM3) < key2_tmpcnt)
					key_period = 60000 - key2_tmpcnt + TIM_GetCounter(TIM3);
				else
					key_period = TIM_GetCounter(TIM3) - key2_tmpcnt;
				if(key_period >= 25)
				{
					if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_9) == Bit_RESET)
					{
						key2_state = KEY_DOWN;
						if(TIM_GetCounter(TIM3) < key2_latest_cnt)
							key_period = 60000 - key2_latest_cnt + TIM_GetCounter(TIM3);
						else
							key_period = TIM_GetCounter(TIM3) - key2_latest_cnt;
						if(key_period < 500)
						{
							key2_behavior = KEY_TWICE_CLICK;
						}
						else
						{
							key2_behavior = KEY_CLICK;
						}
						key2_tmpcnt = TIM_GetCounter(TIM3);
					}
					else
					{
						key2_state = KEY_UP;
					}
				}
				break;
			case KEY_DOWN:
				if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_9) == Bit_RESET)
				{
					if(TIM_GetCounter(TIM3) < key2_tmpcnt)
						key_period = 60000 - key2_tmpcnt + TIM_GetCounter(TIM3);
					else
						key_period = TIM_GetCounter(TIM3) - key2_tmpcnt;
					if(key_period >= 2500)
					{
						key2_state = KEY_KEEP_DOWN;
						key2_behavior = KEY_LONG_DOWN;
					}
				}
				else
				{
					key2_state = KEY_DOWN2UP;
					key2_tmpcnt = TIM_GetCounter(TIM3);
				}
				break;
			case KEY_KEEP_DOWN:
				if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_9) == Bit_SET)
				{
					key2_state = KEY_DOWN2UP;
					key2_tmpcnt = TIM_GetCounter(TIM3);
				}
				break;
			case KEY_DOWN2UP:
				if(TIM_GetCounter(TIM3) < key2_tmpcnt)
					key_period = 60000 - key2_tmpcnt + TIM_GetCounter(TIM3);
				else
					key_period = TIM_GetCounter(TIM3) - key2_tmpcnt;
				if(key_period >= 25)
				{
					if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_9) == Bit_SET)
					{
						key2_state = KEY_UP;
						key2_tmpcnt = TIM_GetCounter(TIM3);
						key2_latest_cnt = key2_tmpcnt;
					}
					else
					{
						if(key2_behavior == KEY_CLICK)
						{
							key2_state = KEY_DOWN;
						}
						else if(key2_behavior == KEY_LONG_DOWN)
						{
							key2_state = KEY_LONG_DOWN;
						}
					}
				}
				break;
			default:
				break;
		}
	}
	return 0;
}
  • Key.h文件内容如下
#ifndef __Key_H
#define __Key_H

#include "stm32f4xx.h"                  // Device header

#define KEY1 0x01
#define KEY2 0x02

enum KEY_STATE{KEY_UP = 1, KEY_UP2DOWN, KEY_DOWN, KEY_KEEP_DOWN, KEY_DOWN2UP};
enum KEY_BEHAVIOR{KEY_CLICK = 1, KEY_TWICE_CLICK, KEY_LONG_DOWN};

void Key_Init(uint8_t keyx);
uint8_t Key_GetValue(uint8_t keyx);

#endif

  •  Timer.c文件内容如下
#include "Timer.h"                  

/**
  * @摘要  		初始化TIM
  * @参数  		无
  * @返回值  	无
  * @说明  		无
  */
void Timer_Init(void)
{
	//开启TIM3时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);			
 
	//选择TIM3的时钟模式为内部模式,时钟源为内部时钟(42*2=84MHZ)
	TIM_InternalClockConfig(TIM3);									
	
	//定义时基单元初始化结构体
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				
	//初始化上述结构体
	TIM_TimeBaseStructInit(&TIM_TimeBaseInitStructure);				
	//配置分频系数为33600,即400us计数值加一
	TIM_TimeBaseInitStructure.TIM_Prescaler = 33600-1;				
	//配置自动重装值为60000
	TIM_TimeBaseInitStructure.TIM_Period = 60000-1;					
	//配置计数模式为向上计数
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;	
	//配置定时器时钟频率与数字滤波器所使用的采样时钟之间的分频比
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;		
	//配置重复计数器的值为0
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;			
	//初始化时基单元
	TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);				
	
	//开启TIM3
	TIM_Cmd(TIM3, ENABLE);																				
}
  •  Timer.h文件内容如下
#ifndef __TIMER_H
#define __TIMER_H

#include "stm32f4xx.h"                  // Device header

void Timer_Init(void);

#endif

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值