功能描述:通过STM32F405RGT6的GPIO和TIM3相配合实现无阻塞的按键检测,能够识别单击、双击(间隔小于200ms)、长按(按下大于1s)。
- main.c文件内容如下
#include "stm32f4xx.h" // Device header
#include "Key.h"
#include "Serial.h"
#include "Timer.h"
int main(void)
{
Key_Init(KEY1 | KEY2);
Timer_Init();
Serial_Init();
Serial_Printf(USART1, "按键测试程序\n\n");
while(1)
{
switch (Key_GetValue(KEY1))
{
case KEY_CLICK:
Serial_Printf(USART1, "按键1单击\n");
break;
case KEY_TWICE_CLICK:
Serial_Printf(USART1, "按键1双击\n");
break;
case KEY_LONG_DOWN:
Serial_Printf(USART1, "按键1长按\n");
break;
default:
break;
}
switch (Key_GetValue(KEY2))
{
case KEY_CLICK:
Serial_Printf(USART1, "按键2单击\n");
break;
case KEY_TWICE_CLICK:
Serial_Printf(USART1, "按键2双击\n");
break;
case KEY_LONG_DOWN:
Serial_Printf(USART1, "按键2长按\n");
break;
default:
break;
}
}
}
- Key.c文件内容如下
#include "Key.h"
uint8_t key1_state = KEY_UP, key2_state = KEY_UP;//状态记录
uint8_t key1_behavior = 0, key2_behavior = 0; //动作记录
uint16_t key1_latest_cnt = 0, key1_tmpcnt = 0; //时间记录
uint16_t key2_latest_cnt = 0, key2_tmpcnt = 0; //时间记录
/**
* @摘要 初始化按键(初始化相应的GPIO端口)
* @参数 KEYx: KEYx为要初始化的按键(根据硬件定义,这里可选KEY1、KEY2及它们的组合)
* @返回值 无
* @说明 无
*/
void Key_Init(uint8_t KEYx)
{
//开启GPIOC时钟
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
//定义GPIO初始化结构体
GPIO_InitTypeDef GPIOInitStructure;
//初始化上述结构体
GPIO_StructInit(&GPIOInitStructure);
//配置GPIO模式为输入模式
GPIOInitStructure.GPIO_Mode = GPIO_Mode_IN;
//配置GPIO输出类型为推挽输出(此处无用)
GPIOInitStructure.GPIO_OType = GPIO_OType_PP;
//配置GPIO输入类型为上拉输入
GPIOInitStructure.GPIO_PuPd = GPIO_PuPd_UP;
//配置GPIO的速度为快速50MHZ
GPIOInitStructure.GPIO_Speed = GPIO_Fast_Speed;
if(KEYx == (KEY1|KEY2))
{
//指定GPIO引脚为Pin8和Pin9
GPIOInitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_9;
}
else if(KEYx == KEY1)
{
//指定GPIO引脚为Pin8
GPIOInitStructure.GPIO_Pin = GPIO_Pin_8;
}
else if(KEYx == KEY2)
{
//指定GPIO引脚为Pin9
GPIOInitStructure.GPIO_Pin = GPIO_Pin_9;
}
//初始化对应的GPIO
GPIO_Init(GPIOC, &GPIOInitStructure);
}
/**
* @摘要 获取按键的动作
* @参数 KEYx: KEYx为要读取的按键(根据硬件定义,这里可选KEY1、KEY2)
* @返回值 按键的动作
0: 无动作
KEY_CLICK: 单击
KEY_TWICE_CLICK: 双击
KEY_LONG_DOWN: 长按
* @说明 无
*/
uint8_t Key_GetValue(uint8_t KEYx)
{
uint8_t key_behavior = 0;
int16_t key_period = 0;
if(KEYx == KEY1)
{
switch (key1_state)
{
case KEY_UP://按键为弹起状态
if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_8) == Bit_RESET)
{
key1_state = KEY_UP2DOWN;
key1_tmpcnt = TIM_GetCounter(TIM3);
}
else
{
if(TIM_GetCounter(TIM3) < key1_latest_cnt)
key_period = 60000 - key1_latest_cnt + TIM_GetCounter(TIM3);
else
key_period = TIM_GetCounter(TIM3) - key1_latest_cnt;
if(key_period > 500)
{
key_behavior = key1_behavior;
key1_behavior = 0;
return key_behavior;
}
}
break;
case KEY_UP2DOWN://按键为从弹起到按下的状态(按下消抖)
if(TIM_GetCounter(TIM3) < key1_tmpcnt)
key_period = 60000 - key1_tmpcnt + TIM_GetCounter(TIM3);
else
key_period = TIM_GetCounter(TIM3) - key1_tmpcnt;
if(key_period >= 25)
{
if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_8) == Bit_RESET)
{
key1_state = KEY_DOWN;
if(TIM_GetCounter(TIM3) < key1_latest_cnt)
key_period = 60000 - key1_latest_cnt + TIM_GetCounter(TIM3);
else
key_period = TIM_GetCounter(TIM3) - key1_latest_cnt;
if(key_period < 500)
{
key1_behavior = KEY_TWICE_CLICK;
}
else
{
key1_behavior = KEY_CLICK;
}
key1_tmpcnt = TIM_GetCounter(TIM3);
}
else
{
key1_state = KEY_UP;
}
}
break;
case KEY_DOWN://按键为按下状态
if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_8) == Bit_RESET)
{
if(TIM_GetCounter(TIM3) < key1_tmpcnt)
key_period = 60000 - key1_tmpcnt + TIM_GetCounter(TIM3);
else
key_period = TIM_GetCounter(TIM3) - key1_tmpcnt;
if(key_period >= 2500)
{
key1_state = KEY_KEEP_DOWN;
key1_behavior = KEY_LONG_DOWN;
}
}
else
{
key1_state = KEY_DOWN2UP;
key1_tmpcnt = TIM_GetCounter(TIM3);
}
break;
case KEY_KEEP_DOWN://按键为持续按下状态
if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_8) == Bit_SET)
{
key1_state = KEY_DOWN2UP;
key1_tmpcnt = TIM_GetCounter(TIM3);
}
break;
case KEY_DOWN2UP://按键为从按下到弹起的过程(松手消抖)
if(TIM_GetCounter(TIM3) < key1_tmpcnt)
key_period = 60000 - key1_tmpcnt + TIM_GetCounter(TIM3);
else
key_period = TIM_GetCounter(TIM3) - key1_tmpcnt;
if(key_period >= 25)
{
if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_8) == Bit_SET)
{
key1_state = KEY_UP;
key1_tmpcnt = TIM_GetCounter(TIM3);
key1_latest_cnt = key1_tmpcnt;
}
else
{
if(key1_behavior == KEY_CLICK)
{
key1_state = KEY_DOWN;
}
else if(key1_behavior == KEY_LONG_DOWN)
{
key1_state = KEY_LONG_DOWN;
}
}
}
break;
default:
break;
}
}
else if(KEYx == KEY2)
{
switch (key2_state)
{
case KEY_UP:
if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_9) == Bit_RESET)
{
key2_state = KEY_UP2DOWN;
key2_tmpcnt = TIM_GetCounter(TIM3);
}
else
{
if(TIM_GetCounter(TIM3) < key2_latest_cnt)
key_period = 60000 - key2_latest_cnt + TIM_GetCounter(TIM3);
else
key_period = TIM_GetCounter(TIM3) - key2_latest_cnt;
if(key_period > 500)
{
key_behavior = key2_behavior;
key2_behavior = 0;
return key_behavior;
}
}
break;
case KEY_UP2DOWN:
if(TIM_GetCounter(TIM3) < key2_tmpcnt)
key_period = 60000 - key2_tmpcnt + TIM_GetCounter(TIM3);
else
key_period = TIM_GetCounter(TIM3) - key2_tmpcnt;
if(key_period >= 25)
{
if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_9) == Bit_RESET)
{
key2_state = KEY_DOWN;
if(TIM_GetCounter(TIM3) < key2_latest_cnt)
key_period = 60000 - key2_latest_cnt + TIM_GetCounter(TIM3);
else
key_period = TIM_GetCounter(TIM3) - key2_latest_cnt;
if(key_period < 500)
{
key2_behavior = KEY_TWICE_CLICK;
}
else
{
key2_behavior = KEY_CLICK;
}
key2_tmpcnt = TIM_GetCounter(TIM3);
}
else
{
key2_state = KEY_UP;
}
}
break;
case KEY_DOWN:
if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_9) == Bit_RESET)
{
if(TIM_GetCounter(TIM3) < key2_tmpcnt)
key_period = 60000 - key2_tmpcnt + TIM_GetCounter(TIM3);
else
key_period = TIM_GetCounter(TIM3) - key2_tmpcnt;
if(key_period >= 2500)
{
key2_state = KEY_KEEP_DOWN;
key2_behavior = KEY_LONG_DOWN;
}
}
else
{
key2_state = KEY_DOWN2UP;
key2_tmpcnt = TIM_GetCounter(TIM3);
}
break;
case KEY_KEEP_DOWN:
if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_9) == Bit_SET)
{
key2_state = KEY_DOWN2UP;
key2_tmpcnt = TIM_GetCounter(TIM3);
}
break;
case KEY_DOWN2UP:
if(TIM_GetCounter(TIM3) < key2_tmpcnt)
key_period = 60000 - key2_tmpcnt + TIM_GetCounter(TIM3);
else
key_period = TIM_GetCounter(TIM3) - key2_tmpcnt;
if(key_period >= 25)
{
if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_9) == Bit_SET)
{
key2_state = KEY_UP;
key2_tmpcnt = TIM_GetCounter(TIM3);
key2_latest_cnt = key2_tmpcnt;
}
else
{
if(key2_behavior == KEY_CLICK)
{
key2_state = KEY_DOWN;
}
else if(key2_behavior == KEY_LONG_DOWN)
{
key2_state = KEY_LONG_DOWN;
}
}
}
break;
default:
break;
}
}
return 0;
}
- Key.h文件内容如下
#ifndef __Key_H
#define __Key_H
#include "stm32f4xx.h" // Device header
#define KEY1 0x01
#define KEY2 0x02
enum KEY_STATE{KEY_UP = 1, KEY_UP2DOWN, KEY_DOWN, KEY_KEEP_DOWN, KEY_DOWN2UP};
enum KEY_BEHAVIOR{KEY_CLICK = 1, KEY_TWICE_CLICK, KEY_LONG_DOWN};
void Key_Init(uint8_t keyx);
uint8_t Key_GetValue(uint8_t keyx);
#endif
- Timer.c文件内容如下
#include "Timer.h"
/**
* @摘要 初始化TIM
* @参数 无
* @返回值 无
* @说明 无
*/
void Timer_Init(void)
{
//开启TIM3时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
//选择TIM3的时钟模式为内部模式,时钟源为内部时钟(42*2=84MHZ)
TIM_InternalClockConfig(TIM3);
//定义时基单元初始化结构体
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
//初始化上述结构体
TIM_TimeBaseStructInit(&TIM_TimeBaseInitStructure);
//配置分频系数为33600,即400us计数值加一
TIM_TimeBaseInitStructure.TIM_Prescaler = 33600-1;
//配置自动重装值为60000
TIM_TimeBaseInitStructure.TIM_Period = 60000-1;
//配置计数模式为向上计数
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
//配置定时器时钟频率与数字滤波器所使用的采样时钟之间的分频比
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
//配置重复计数器的值为0
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
//初始化时基单元
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);
//开启TIM3
TIM_Cmd(TIM3, ENABLE);
}
- Timer.h文件内容如下
#ifndef __TIMER_H
#define __TIMER_H
#include "stm32f4xx.h" // Device header
void Timer_Init(void);
#endif