【Java】单例设计模式

 

 

一、什么是单例设计模式

单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保

证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统资源。简单的说来

就是:确保一个类中只有唯一的实例,并提供给外界访问!

对于系统中的某些类来说,只有一个实例很重要,例如,一个系统中可以存在多个打印任务,但是只能有一个正在

工作的任务;一个系统只能有一个窗口管理器或文件系统;一个系统只能有一个计时工具或ID(序号)生成器。如在

Windows中就只能打开一个任务管理器。如果不使用机制对窗口对象进行唯一化,将弹出多个窗口,如果这些窗口

显示的内容完全一致,则是重复对象,浪费内存资源;如果这些窗口显示的内容不一致,则意味着在某一瞬间系统

有多个状态,与实际不符,也会给用户带来误解,不知道哪一个才是真实的状态。因此有时确保系统中某个对象的

唯一性即一个类只能有一个实例非常重要。

单例模式有如下特点:

1、单例类只能有一个实例。
2、单例类必须自己创建自己的唯一实例。
3、单例类必须给所有其他对象提供这一实例。

从具体实现角度来说,就是以下三点:

一是单例模式的类只提供私有的构造函数,

二是类定义中含有一个该类的静态私有对象,

三是该类提供了一个静态的公有的函数用于创建或获取它本身的静态私有对象。

单例设计模式因为能阻止其他对象实例化其自己的单例对象的副本,从而确保所有对象都访问唯一实例,并且因为

类控制了实例化过程,所以类可以灵活更改实例化过程。

 

二、单例模式的种类

java中有23中设计模式

java中单例模式的运用即节约了内存,又解决了当实例存在多个会引起程序逻辑错误的应用程序问题。

 

1、恶汉式单例

 

 

<span style="font-size:14px;">class Single{
       //类已加载,对象就已经存在了
       private static Single s = new Single();

       private Single(){}

       public static Single getInstance(){
             return s ;
      }
}

class SingleDemo{
       public static void main(String[] args){
            Single s1 = Single.getInstance();
            Single s2 = Single. getInstance();
            System.out.println(s1 == s2);
      }
}</span><span style="font-size:18px;"><strong>
</strong></span>

 

 

 

 

 


此实现是线程安全的,多个线程进行访问时不会实例化多个对象,因为static属性只会被初始化一次,缺点是无论是否用到该实例都会被初始化,无故的开销变大。   

 P.S.
    之所以不用Single.s;的方式获取Single对象,而采用getInstance获取是因为在getInstance方法中我们可以做一些判断来决定是否返回Single的对象,也就是实现了对单例对象的可控。所以,给Single的构造方法加上了private限制,禁止使用者直接采用Single.s的方式获取。

 

2、懒汉式单例

 

<span style="font-size:14px;">class Single{
       //类加载进来,没有对象,只有调用了getInstance方法时,才会创建对象
       //延迟加载形式
       private static Single s = null;

       private Single(){}

       public static Single getInstance(){
             if(s == null)
                   s = new Single();
             return s ;
      }
}

class SingleDemo{
       public static void main(String[] args){
            Single s1 = Single. getInstance();
            Single s2 = Single. getInstance();
            System.out.println(s1 == s2);
      }
}</span><span style="font-size:18px;"><strong>
</strong></span>

 

 

 

 

 

 

 

三、懒汉式和恶汉式单例的区别:

 

1、线程安全:

饿汉式是线程安全的,直接用于多线程也不会出现问题,懒汉式就不行,它是线程不安全的,如果用于多线程可能会被实例化多次,失去单例的作用。

如果要把懒汉式用于多线程,有两种方式保证安全性,一种是在getInstance方法上加同步,另一种是在使用该单例方法前后加双锁。

2、资源加载:

饿汉式在类创建的同时就实例化一个静态对象出来,不管之后会不会使用这个单例,会占据一定的内存,相应的在调用时速度也会更快,

而懒汉式顾名思义,会延迟加载,在第一次使用该单例的时候才会实例化对象出来,第一次掉用时要初始化,如果要做的工作比较多,性能上会有些延迟。

 

四、懒汉式的同步优化:

 

<span style="font-size:14px;">class Single{
	
	//静态私有的成员变量
    private static Single s = null;
    
    // 私有构造方法
    private Single(){}
    
    
    public static Single getInstance(){
    	
            if(s==null){
            	
            		//懒汉式多线程容易出问题  ,加双重判断解决了这个问题
                    synchronized (s) {
                    	
                            if(s==null)
                            	s  =new Single();                        
                    }
            }
            return  s;
    }
    
}</span>

 

 

美好的一天!

 

  


 

### Java 单例设计模式的实现与使用 #### 1. **单例设计模式概述** 单例设计模式是一种创建型设计模式,其核心目标是确保一个类在整个应用程序生命周期中只有一个实例,并提供一个全局访问点来获取这个实例[^2]。这种模式通常用于需要控制资源分配的场景,例如数据库连接池、线程池等。 --- #### 2. **单例模式的核心特性** - **唯一性**:单例类只能有一个实例。 - **自我管理**:单例类负责创建并维护自身的唯一实例。 - **全局访问**:通过静态方法或其他机制向外界提供对该唯一实例的访问[^4]。 --- #### 3. **常见实现方式** ##### (1) **饿汉式(Eager Initialization)** 饿汉式是最简单的一种单例模式实现方式。在类加载时就初始化实例,因此不存在线程安全问题。 ```java public class Singleton { // 静态变量保存唯一实例 private static final Singleton instance = new Singleton(); // 私有构造函数防止外部实例化 private Singleton() {} // 提供全局访问点 public static Singleton getInstance() { return instance; } } ``` 这种方式的优点是实现简单,缺点是无论是否需要用到该实例都会提前创建,可能会浪费资源[^5]。 --- ##### (2) **懒汉式(Lazy Initialization)** 懒汉式只有在第一次调用 `getInstance()` 方法时才会创建实例,适用于延迟加载的场景。 ```java public class Singleton { // 使用 volatile 关键字保证多线程环境下的可见性和有序性 private static volatile Singleton instance; // 私有构造函数防止外部实例化 private Singleton() {} // 双重检查锁定(Double-Checked Locking) public static Singleton getInstance() { if (instance == null) { // 第一次检查 synchronized (Singleton.class) { if (instance == null) { // 第二次检查 instance = new Singleton(); } } } return instance; } } ``` 这种方法解决了资源浪费的问题,但引入了双重检查锁机制以确保线程安全性[^5]。 --- ##### (3) **静态内部类实现** 静态内部类的方式既实现了延迟加载,又避免了同步带来的性能开销。 ```java public class Singleton { // 私有构造函数防止外部实例化 private Singleton() {} // 定义静态内部类,在首次调用 getInstance() 时才加载 private static class SingletonHolder { private static final Singleton INSTANCE = new Singleton(); } // 提供全局访问点 public static Singleton getInstance() { return SingletonHolder.INSTANCE; } } ``` 这种方式利用 JVM 的类加载机制保证了线程安全,同时实现了按需加载[^5]。 --- ##### (4) **枚举实现** 枚举实现被认为是最佳实践之一,因为它不仅简洁明了,还能天然抵抗反射攻击和序列化破坏。 ```java public enum SingletonEnum { INSTANCE; private String data; public String getData() { return data; } public void setData(String data) { this.data = data; } } ``` 枚举类型的单例天生具备线程安全性和反序列化的保护能力[^3]。 --- #### 4. **应用场景** - 数据库连接池:确保多个模块共享同一个连接池实例。 - 日志记录器:集中管理和输出日志信息。 - 配置管理器:统一读取和解析配置文件的内容。 - 线程池:合理分配有限的线程资源。 --- #### 5. **注意事项** - **线程安全**:对于懒汉式和其他动态加载的实现方式,必须考虑并发环境下可能产生的问题。 - **序列化与反序列化**:如果单例类支持序列化/反序列化功能,应重写 `readResolve` 方法以防止多次实例化。 - **反射攻击**:可以通过将构造函数声明为私有,并抛出异常的方式来阻止非法实例化。 --- ### 示例代码总结 以下展示了四种不同实现方式的对比: | 实现方式 | 是否延迟加载 | 线程安全 | 复杂度 | |----------------|--------------|------------------|--------| | 饿汉式 | 否 | 是 | ★ | | 懒汉式 | 是 | 需要额外处理 | ★★ | | 静态内部类 | 是 | 自然线程安全 | ★★★ | | 枚举实现 | 是 | 最佳实践 | ★★★★ | ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值