关于进程和线程
进程和线程都是一个时间段的描述,是CPU工作时间段的描述。
下面细说背景:
CPU+RAM+各种资源(比如显卡,光驱,键盘,GPS, 等等外设)构成我们的电脑,但是电脑的运行,实际就是CPU和相关寄存器以及RAM之间的事情。
一个最最基础的事实:CPU太快,太快,太快了,寄存器仅仅能够追的上他的脚步,RAM和别的挂在各总线上的设备完全是望其项背。那当多个任务要执行的时候怎么办呢?轮流着来?或者谁优先级高谁来?不管怎么样的策略,一句话就是在CPU看来就是轮流着来。
一个必须知道的事实:执行一段程序代码,实现一个功能的过程介绍 ,当得到CPU的时候,相关的资源必须也已经就位,就是显卡啊,GPS啊什么的必须就位,然后CPU开始执行。这里除了CPU以外所有的就构成了这个程序的执行环境,也就是我们所定义的程序上下文。当这个程序执行完了,或者分配给他的CPU执行时间用完了,那它就要被切换出去,等待下一次CPU的临幸。在被切换出去的最后一步工作就是保存程序上下文,因为这个是下次他被CPU临幸的运行环境,必须保存。
串联起来的事实:前面讲过在CPU看来所有的任务都是一个一个的轮流执行的,具体的轮流方法就是:
先加载程序A的上下文,然后开始执行A,保存程序A的上下文,调入下一个要执行的程序B的程序上下文,然后开始执行B,保存程序B的上下文
。。。
。
========= 重要的东西出现了========
进程和线程
就是这样的背景出来的
,两个名词不过是对应的CPU时间段的描述,名词就是这样的功能。
- 进程就是包换上下文切换的程序执行时间总和 = CPU加载上下文+CPU执行+CPU保存上下文
线程是什么呢?
进程的颗粒度太大,每次都要有上下的调入,保存,调出。如果我们把进程比喻为一个运行在电脑上的软件,那么一个软件的执行不可能是一条逻辑执行的,必定有多个分支和多个程序段,就好比要实现程序A,实际分成 a,b,c等多个块组合而成。那么这里具体的执行就可能变成:
程序A得到CPU =》CPU加载上下文,开始执行程序A的a小段,然后执行A的b小段,然后再执行A的c小段,最后CPU保存A的上下文。
这里a,b,c的执行是共享了A的上下文,CPU在执行的时候没有进行上下文切换的。这
里的a,b,c就是线程,也就是说线程是共享了进程的上下文环境,的更为细小的CPU时间段。
总结:
进程和线程都是一个时间段的描述,是CPU工作时间段的描述,不过是颗粒大小不同。
背景
1、GIL是什么?
GIL的全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定。
2、每个CPU在同一时间只能执行一个线程(在单核CPU下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念。但并发和并行又有区别,并行是指两个或者多个事件在同一时刻发生;而并发是指两个或多个事件在同一时间间隔内发生。)
在Python多线程下,每个线程的执行方式:
获取GIL
执行代码直到sleep或者是python虚拟机将其挂起。
释放GIL
可见,某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。
在Python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是Python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过 sys.setcheckinterval 来调整),进行释放。
而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。
那么是不是python的多线程就完全没用了呢?
在这里我们进行分类讨论:
1、CPU密集型代码(各种循环处理、计数等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。
2、IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以python的多线程对IO密集型代码比较友好。
而在python3.x中,GIL不使用ticks计数,改为使用计时器(执行时间达到阈值后,当前线程释放GIL),这样对CPU密集型程序更加友好,但依然没有解决GIL导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。
多核性能
多核多线程比单核多线程更差,原因是单核下多线程,每次释放GIL,唤醒的那个线程都能获取到GIL锁,所以能够无缝执行,但多核下,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低
多进程为什么不会这样?
每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行,所以在python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。
所以在这里说结论:多核下,想做并行提升效率,比较通用的方法是使用多进程,能够有效提高执行效率。
使用Threading模块创建线程,直接从threading.Thread继承,然后重写
init
方法和run方法:
import threading
import time
import _thread
exitFlag = 0
class
myThread(threading.Thread):
# 继承父类threading.Thread
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def
run(
self
):
# 把要执行的代码写到run函数里面 线程在创建后会直接运行run函数
print
(
"Starting "
+
self
.name)
print_time(
self
.name,
self
.counter,
5
)
print
(
"Exiting "
+
self
.name)
def print_time(threadName, delay, counter):
while counter:
if exitFlag:
_thread.exit()
time.sleep(delay)
print("%s: %s" % (threadName, time.ctime(time.time())))
counter -= 1
# 创建新线程
thread1 = myThread(
1
,
"Thread-1"
,
1
)
thread2 = myThread(
2
,
"Thread-2"
,
2
)
# 开启线程
thread1.start()
thread2.start()
print("Exiting Main Thread")
运行结果
Starting Thread-1
Starting Thread-2
Exiting Main Thread
Thread-1: Tue Mar 6 11:22:42 2018
Thread-2: Tue Mar 6 11:22:43 2018
Thread-1: Tue Mar 6 11:22:43 2018
Thread-1: Tue Mar 6 11:22:44 2018
Thread-2: Tue Mar 6 11:22:45 2018
Thread-1: Tue Mar 6 11:22:45 2018
Thread-1: Tue Mar 6 11:22:46 2018
Exiting Thread-1
Thread-2: Tue Mar 6 11:22:47 2018
Thread-2: Tue Mar 6 11:22:49 2018
Thread-2: Tue Mar 6 11:22:51 2018
Exiting Thread-2
第一行之后应该是一个回车的,结果第二个进程就打印出来了。
那是因为这几个线程没有设置同步。
线程同步
如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。
使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。如下:
多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。
考虑这样一种情况:一个列表里所有元素都是0,线程”set”从后向前把所有元素改成1,而线程”print”负责从前往后读取列表并打印。
那么,可能线程”set”开始改的时候,线程”print”便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。
锁有两种状态——锁定和未锁定。每当一个线程比如”set”要访问共享数据时,必须先获得锁定;如果已经有别的线程比如”print”获得锁定了,那么就让线程”set”暂停,也就是同步阻塞;等到线程”print”访问完毕,释放锁以后,再让线程”set”继续。
经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。
看下面的例子:
import threading
import time
class myThread(threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print
(
"Starting "
+
self
.name)
# 获得锁,成功获得锁定后返回True
# 可选的timeout参数不填时将一直阻塞直到获得锁定
# 否则超时后将返回False
threadLock.acquire()
print_time(
self
.name,
self
.counter,
3
)
# 释放锁
threadLock.release()
def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print("%s: %s" % (threadName, time.ctime(time.time())))
counter -= 1
threadLock = threading.Lock()
threads = []
# 创建新线程
thread1 = myThread(
1
,
"Thread-1"
,
1
)
thread2 = myThread(
2
,
"Thread-2"
,
2
)
# 开启新线程
thread1.start()
thread2.start()
# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)
# 等待所有线程完成
for
t
in
threads:
t.join()
print("Exiting Main Thread")
运行如下:
Starting Thread-1
Starting Thread-2
Thread-1: Tue Mar 6 11:35:31 2018
Thread-1: Tue Mar 6 11:35:32 2018
Thread-1: Tue Mar 6 11:35:33 2018
Thread-2: Tue Mar 6 11:35:35 2018
Thread-2: Tue Mar 6 11:35:37 2018
Thread-2: Tue Mar 6 11:35:39 2018
Exiting Main Thread
这样一来,就不会出现刚才的输出混乱的结果了。
线程优先级
Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。
Queue模块中的常用方法:
Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.full 与 maxsize 大小对应
Queue.get([block[, timeout]])获取队列,timeout等待时间
Queue.get_nowait() 相当Queue.get(False)
Queue.put(item) 写入队列,timeout等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)
Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
Queue.join() 实际上意味着等到队列为空,再执行别的操作
实例:
import queue
import threading
import time
exitFlag = 0
class myThread(threading.Thread):
def
__init__
(
self
, threadID, name, q):
threading.Thread.
__init__
(
self
)
self.threadID = threadID
self.name = name
self.q = q
def
run(
self
):
print
(
"Starting "
+
self
.name)
process_data(
self
.name,
self
.q)
print
(
"Exiting "
+
self
.name)
def process_data(threadName, q):
while not exitFlag:
queueLock.acquire()
if not workQueue.empty():
data = q.get()
queueLock.release()
print
(
"%s processing %s"
% (threadName, data))
else:
queueLock.release()
time.sleep(
1
)
threadList = [
"Thread-1"
,
"Thread-2"
,
"Thread-3"
]
nameList = [
"One"
,
"Two"
,
"Three"
,
"Four"
,
"Five"
]
queueLock = threading.Lock()
workQueue = queue.Queue(
10
)
threads = []
threadID = 1
# 创建新线程
for
tName
in
threadList:
thread = myThread(threadID, tName, workQueue)
thread.start()
threads.append(thread)
threadID += 1
# 填充队列
queueLock.acquire()
for
word
in
nameList:
workQueue.put(word)
queueLock.release()
# 等待队列清空
while not workQueue.empty():
pass
# 通知线程是时候退出
exitFlag = 1
# 等待所有线程完成
for
t
in
threads:
t.join()
print
(
"Exiting Main Thread"
)
运行结果:
Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-3 processing One
Thread-3 processing Two
Thread-2 processing Three
Thread-1 processing Four
Thread-2 processing Five
Exiting Thread-1
Exiting Thread-3
Exiting Thread-2
Exiting Main Thread