一组多线程使用的例子:http://janeky.iteye.com/category/124727
JDK1.5的包:
java.util.concurrent
1、
public interface Future<V>
Future 表示异步计算的结果。它提供了检查计算是否完成的方法,以等待计算的完成,并检索计算的结果。计算完成后只能使用 get 方法来检索结果,如有必要,计算完成前可以阻塞此方法。取消则由 cancel 方法来执行。还提供了其他方法,以确定任务是正常完成还是被取消了。一旦计算完成,就不能再取消计算。如果为了可取消性而使用 Future但又不提供可用的结果,则可以声明 Future<?> 形式类型、并返回 null 作为基础任务的结果。
用法示例(注意,下列各类都是构造好的。)
interface ArchiveSearcher { String search(String target); } class App { ExecutorService executor = ... ArchiveSearcher searcher = ... void showSearch(final String target) throws InterruptedException { Future<String> future = executor.submit(new Callable<String>() { public String call() { return searcher.search(target); } }); displayOtherThings(); // do other things while searching try { displayText(future.get()); // use future } catch (ExecutionException ex) { cleanup(); return; } } }
FutureTask
类是 Future 的一个实现,Future 可实现 Runnable,所以可通过 Executor 来执行。例如,可用下列内容替换上面带有 submit 的构造:
FutureTask<String> future = new FutureTask<String>(new Callable<String>() { public String call() { return searcher.search(target); }}); executor.execute(future);
2、
public interface Callable<V>
返回结果并且可能抛出异常的任务。实现者定义了一个不带任何参数的叫做 call 的方法。
Callable 接口类似于 Runnable
,两者都是为那些其实例可能被另一个线程执行的类设计的。但是 Runnable 不会返回结果,并且无法抛出经过检查的异常。
Executors
类包含一些从其他普通形式转换成 Callable 类的实用方法。
3、
public interface ExecutorService
-
extends
Executor
Executor
提供了管理终止的方法,以及可为跟踪一个或多个异步任务执行状况而生成 Future
的方法。
可以关闭 ExecutorService,这将导致其停止接受新任务。关闭后,执行程序将最后终止,这时没有任务在执行,也没有任务在等待执行,并且无法提交新任务。
通过创建并返回一个可用于取消执行和/或等待完成的 Future
,方法 submit 扩展了基本方法 Executor.execute(java.lang.Runnable)
。方法 invokeAny 和 invokeAll 是批量执行的最常用形式,它们执行任务集合,然后等待至少一个,或全部任务完成(可使用 ExecutorCompletionService
类来编写这些方法的自定义变体)。
Executors
类提供了用于此包中所提供的执行程序服务的工厂方法。
用法示例
下面给出了一个网络服务的简单结构,这里线程池中的线程作为传入的请求。它使用了预先配置的 Executors.newFixedThreadPool(int)
工厂方法:
class NetworkService { private final ServerSocket serverSocket; private final ExecutorService pool; public NetworkService(int port, int poolSize) throws IOException { serverSocket = new ServerSocket(port); pool = Executors.newFixedThreadPool(poolSize); } public void serve() { try { for (;;) { pool.execute(new Handler(serverSocket.accept())); } } catch (IOException ex) { pool.shutdown(); } } } class Handler implements Runnable { private final Socket socket; Handler(Socket socket) { this.socket = socket; } public void run() { // read and service request } }
4、
public interface Executor
执行已提交的 Runnable
任务的对象。此接口提供一种将任务提交与每个任务将如何运行的机制(包括线程使用的细节、调度等)分离开来的方法。通常使用 Executor 而不是显式地创建线程。例如,可能会使用以下方法,而不是为一组任务中的每个任务调用 new Thread(new(RunnableTask())).start():
Executor executor = anExecutor; executor.execute(new RunnableTask1()); executor.execute(new RunnableTask2()); ...
不过,Executor 接口并没有严格地要求执行是异步的。在最简单的情况下,执行程序可以在调用方的线程中立即运行已提交的任务:
class DirectExecutor implements Executor { public void execute(Runnable r) { r.run(); } }
更常见的是,任务是在某个不是调用方线程的线程中执行的。以下执行程序将为每个任务生成一个新线程。
class ThreadPerTaskExecutor implements Executor { public void execute(Runnable r) { new Thread(r).start(); } }
许多 Executor 实现都对调度任务的方式和时间强加了某种限制。以下执行程序使任务提交与第二个执行程序保持连续,这说明了一个复合执行程序。
class SerialExecutor implements Executor { final Queue<Runnable> tasks = new LinkedBlockingQueue<Runnable>(); final Executor executor; Runnable active; SerialExecutor(Executor executor) { this.executor = executor; } public synchronized void execute(final Runnable r) { tasks.offer(new Runnable() { public void run() { try { r.run(); } finally { scheduleNext(); } } }); if (active == null) { scheduleNext(); } } protected synchronized void scheduleNext() { if ((active = tasks.poll()) != null) { executor.execute(active); } } }
此包中提供的 Executor 实现实现了 ExecutorService
,这是一个使用更广泛的接口。ThreadPoolExecutor
类提供一个可扩展的线程池实现。Executors
类为这些 Executor 提供了便捷的工厂方法。