lightgbm适用于多个任务(回归,二分类,多分类),具体的参数需要做出变化,下面给出各任务的基本代码。
回归
import sklearn
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score,mean_squared_error
import numpy as np
import lightgbm as lgb
boston_price = datasets.load_boston()
data = boston_price.data
target = boston_price.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2)
print("Train data length:", len(X_train))
print("Test data length:", len(X_test))
# 转换为Dataset数据格式
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# 参数
params = {
'boosting_type': 'gbdt', # 设置提升类型

最低0.47元/天 解锁文章
1442

被折叠的 条评论
为什么被折叠?



