Python-Django毕业设计校园志愿者系统平台(程序+LW).

项目运行

环境配置:

Jdk1.8 + Tomcat7.0 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。

项目技术:

SSM + mybatis + Maven + Vue 等等组成,B/S模式 + Maven管理等等。

环境需要

1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。

2.IDE环境:IDEA,Eclipse,Myeclipse都可以。推荐IDEA;

3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可

4.硬件环境:windows 7/8/10 1G内存以上;或者 Mac OS;

5.是否Maven项目: 否;查看源码目录中是否包含pom.xml;若包含,则为maven项目,否则为非maven项目

6.数据库:MySql 5.7/8.0等版本均可;

毕设帮助,指导,本源码分享,调试部署(见文末)

系统实现是新系统开发工作的最后一个阶段。它是将结构化系统设计的成果变成可实际运行的系统的过程。这一部分主要对系统的主要功能模块的实现细节进行了详细的阐述。

5.1功能页面实现

按照不同功能模块,在此对系统所涉及的关键页面的实现细节进行阐述,包括页面功能描述,页面涉及功能分析,介绍以及界面展示。

系统登录:运行系统,首先进入登录界面,按照登录界面的要求填写相应的“账号”和“密码”以及用户类型,点击“登录”然后系统判断填写是否正确,若正确进入相应的界面,否则给出要求先注册信息。具体流程如图5-1所示。

8ef0f5a52911408aa039c841a3be204b.png

图5-1 登录流程图

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值