基于python的完全数之非TDD版本

本文介绍了一种非测试驱动开发(TDD)的方法来实现Python中的完全数检测。完全数是指所有小于它的因数相加之和等于它本身的整数。通过遍历和因子分解,我们可以确定一个数是否为完全数。这种方法不依赖于TDD流程,而是直接进行代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Filename: perfect_number.py

import time
from math import sqrt, floor

'''
' 创建一个完全数查找程序
'
' 完全数指其真因子相加等于数字本身的数字。
' 例如,6 是一个完全数,因为 6 的因子(不包括 6 本身)是 1、2 和 3,
' 而 1 + 2 + 3 = 6。
' 更规则的完全数定义是因子(不包括该数字本身)之和等于该数字的数字。
' 在我的示例中,计算结果是 1 + 2 + 3 + 6 - 6 = 6。
''' 

def is_perfect(num):
    sum = 1
    for i in range(2, num):
        if (num % i) == 0: 
            sum += i
    return sum == num

def is_perfect2(num):
    factors = []
    sum = 1
    for i in range(2, int(floor(sqrt(num))) + 1):
        if (num % i) == 0: 
            factors.append(i)
            if (num / i !=  i):
                factors.append(num / i)
    for f in factors:
        sum += f
    return sum == num

def is_perfect3(num):
    sum = 1
    for i in range(2, int(floor(sqrt(num))) + 1):
        if (num % i) == 0: 
            sum += i
            if (num / i !=  i):
                sum += num / i
    return sum == num

# Test  
PERFECT_NUMS = [6, 28, 496, 8128, 33550336]
# 1
def test_perfect(proc):
    for num in PERFECT_NUMS:
        assert(proc(num))


# 2
def test_non_perfect(proc):
    for i in  range(2, 10000):
        if PERFECT_NUMS.count(i) > 0:
            assert(proc(i))
        else:
            assert(not proc(i))
    assert(proc(PERFECT_NUMS[4]))

'''
start = time.time()
test_perfect(is_perfect)
test_non_perfect(is_perfect)
print "is_perfect took %f secs" % (time.time() - start)
'''

start = time.time()
test_perfect(is_perfect2)
test_non_perfect(is_perfect2)
print "is_perfect2 took %f secs" % (time.time() - start)

start = time.time()
test_perfect(is_perfect3)
test_non_perfect(is_perfect3)
print "is_perfect3 took %f secs" % (time.time() - start)


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值