A line on the plane is described by an equation Ax + By + C = 0. You are to find any point on this line, whose coordinates are integer numbers from - 5·1018 to 5·1018 inclusive, or to find out that such points do not exist.
The first line contains three integers A, B and C ( - 2·109 ≤ A, B, C ≤ 2·109) — corresponding coefficients of the line equation. It is guaranteed that A2 + B2 > 0.
If the required point exists, output its coordinates, otherwise output -1.
2 5 3
6 -3
#include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef long long int ll; ll ext_gcd(ll a,ll b,ll& s,ll& t){ if(b==0){ s = 1; t = 0; return a; } ll ans = ext_gcd(b,a%b,s,t); ll tmp = s; s = t; t = tmp-a/b*s; return ans; } int main(){ ll a,b,c; scanf("%I64d %I64d %I64d",&a,&b,&c); ll s=0,t=0; ll d = ext_gcd(a,b,s,t); if(c%d!=0) printf("-1\n"); else printf("%I64d %I64d\n",-1*c/d*s,-1*c/d*t); return 0; }

本文介绍了一个算法问题,即如何找到一条由方程 Ax + By + C = 0 定义的直线上,坐标为整数且位于特定范围内的任意一点。通过扩展欧几里得算法确定该点是否存在并计算其坐标。
2387

被折叠的 条评论
为什么被折叠?



