GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1788 Accepted Submission(s): 895
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3 1 1 10 2 10000 72
Sample Output
1 6 260分析:若X与n存在大于m的最大公约数,设d=(x,n);则X=q*d,n=p*d; 并且 (p,q)=1;我们可以枚举公约数,由欧拉函数的定义可知 phi(p)即为所求代码如下:#include <cstdio> #include <cstdlib> #include <algorithm> #include <iostream> #include <cmath> using namespace std; typedef long long int ll; int euler(int N){ int ans = N; for(int i=2; i*i<=N; i++){ if(N%i==0) ans = ans/i*(i-1); while(N%i==0) N /= i; } if(N>1) ans = ans/N*(N-1); return ans; } int main(){ int T; scanf("%d",&T); int N,M; int ans; while(T--){ ans = 0; scanf("%d %d",&N,&M); for(int i=1; i*i<=N; i++){ if(i*i==N && i>=M) ans += euler(i); else if(N%i==0){ if(i>=M) ans += euler(N/i); if(N/i>=M) ans += euler(i); } } printf("%d\n",ans); } return 0; }