| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 13372 | Accepted: 9517 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
struct matrix{
int arr[2][2];
};
matrix base,ans;
matrix matrix_multip(matrix a,matrix b){
matrix tmp;
for(int i=0; i<2; i++){
for(int j=0; j<2; j++){
tmp.arr[i][j] = 0;
for(int k=0; k<2; k++)
tmp.arr[i][j] = (tmp.arr[i][j]+a.arr[i][k]*b.arr[k][j])%10000;
}
}
return tmp;
}
void matrix_pow(matrix a,int n){
while(n){
if(n%2)
ans = matrix_multip(ans,a);
a = matrix_multip(a,a);
n /= 2;
}
}
int main(){
base.arr[0][0] = base.arr[0][1] = base.arr[1][0] = 1;
base.arr[1][1] = 0;
int n;
while(~scanf("%d",&n) && n!=-1){
ans.arr[0][0] = ans.arr[1][1] = 1;
ans.arr[0][1] = ans.arr[1][0] = 0;
matrix_pow(base,n);
printf("%d\n",ans.arr[0][1]);
}
return 0;
}
686

被折叠的 条评论
为什么被折叠?



