自费送书!你敢抽,我敢送,就是这么任性!

福利时间

1. 本公众号 【Python编程与实战 】开通也快大半年了,一直想给一路上支持我的朋友们送几本书,但是一直没有找到有合作意向的出版社!

2. 万幸昨天接了一个小广告,有点恰饭的钱。有广告愿意投放,说明这个号还有点价值,还望大家能够理解,毕竟公众号唯一的收入来源,就是接点广告了。

3. 马上到国庆节了,为了回馈一直支持我的朋友们,我把这些小钱拿来给大家买书,一共3本,再次感谢金主,大家都帮忙点进去扫一扫二维码,课程很不错!

点击进入了解一下!

image

书单

因为本公众号是 Python编程,所以书籍也都是和 Python 相关的。

Python Cookbook

介绍了Python应用在各个领域中的一些使用技巧和方法,其主题涵盖了数据结构和算法,字符串和文本,数字、日期和时间,迭代器和生成器,文件和I/O,数据编码与处理,函数,类与对象,元编程,模块和包,网络和Web编程,并发,实用脚本和系统管理,测试、调试以及异常,C语言扩展等。

这是一本非常不错的关于 Python 的进阶书籍,也是很多人推荐的进阶必备书。在豆瓣读书上的评分高达 9.5 分!

本书覆盖了Python应用中的很多常见问题,并提出了通用的解决方案。书中包含了大量实用的编程技巧和示例代码,并在Python 3.3环境下进行了测试,可以很方便地应用到实际项目中去。此外,《Python Cookbook(第3版)中文版》还详细讲解了解决方案是如何工作的,以及为什么能够工作。

像计算机科学家一样思考Python

本书以培养读者以计算机科学家一样的思维方式来理解Python语言编程。贯穿全书的主体是如何思考、设计、开发的方法,而具体的编程语言,只是提供了一个具体场景方便介绍的媒介。

一本非常非常适合编程入门的书籍,书中不仅仅涵盖了所有的 python 知识点,更多的是教你在遇到问题如何去思考,锻炼你的思维能力,具有一定的深度!语言只是工具,你的思维和思考问题的能力才是最重要的!

全书共21章,详细介绍Python语言编程的方方面面。本书从基本的编程概念开始讲起,包括语言的语法和语义,而且每个编程概念都有清晰的定义,引领读者循序渐进地学习变量、表达式、语句、函数和数据结构。书中还探讨了如何处理文件和数据库,如何理解对象、方法和面向对象编程,如何使用调试技巧来修正语法错误、运行时错误和语义错误。每一章都配有术语表和练习题,方便读者巩固所学的知识和技巧。此外,每一章都抽出一节来讲解如何调试程序。作者针对每章所专注的语言特性,或者相关的开发问题,总结了调试的方方面面。

利用Python进行数据分析

【名人推荐】

“科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法。本书在未来几年里肯定会成为Python领域中技术计算的权威指南。”
——Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一

【内容简介】

还在苦苦寻觅用Python控制、处理、整理、分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy、pandas、matplotlib以及IPython等)高效地解决各式各样的数据分析问题。

现在用 Python 做数据分析也非常的火爆,如果你想从事数据分析方向的工作,那么这本书你一定不能错过!

抽奖方式

公众号后台回复【抽奖】即可参与赠书抽奖!

由于个人喜好的书籍不同,截止开奖日,根据公众后台数据统计,以分享转发文章最多阅读****文章最多赞赏次数最多来确定中奖朋友选择顺序。

比如:转发文章最多的比没有转发文章的,中奖后转发文章最多的拥有优先选择权。

还请朋友多多关注,以后不定期送书或者群里****发红包等其他福利!

PS:为了不影响大家国庆节度假,所以开奖日期定在10月6日,到时候会自动开奖,你可以选择任意日期收货,中奖后请联系我!提前祝大家国庆节快乐,同时注意安全,出门在外安全第一!

2019-09-29_095926.png

Python 中集成 Ollama 可以通过使用 `ollama` 官方提供的 Python 客户端库来实现。Ollama 是一个本地运行的大型语言模型(LLM)工具,它支持多种模型,如 Llama 2、Mistral 等,并且可以通过简单的 APIPython 应用程序集成。 ### 安装 Ollama Python 库 首先,需要确保你已经在本地系统上安装了 Ollama。你可以从 [Ollama 官方网站](https://ollama.com/)下载并安装适用于你操作系统的版本。 接下来,安装 Python 客户端库。Ollama 提供了一个官方的 Python 包,可以通过 `pip` 安装: ```bash pip install ollama ``` ### 使用 Ollama Python 库 安装完成后,可以使用 `ollama` 模块来调用 OllamaAPI。以下是一个简单的示例,展示如何使用 Ollama 的 `generate` 方法来生成文本: ```python import ollama # 生成文本 response = ollama.generate(model='llama3', prompt='为什么天空是蓝色的?') # 打印响应 print(response['response']) ``` 在这个例子中,`model` 参数指定了要使用的模型(例如 `llama3`),`prompt` 参数是用户输入的提示词。Ollama 会根据提示词生成相应的文本,并返回一个包含 `response` 字段的字典。 ### 获取模型列表 如果你想查看当前可用的模型,可以使用以下代码: ```python import ollama # 获取模型列表 models = ollama.list() # 打印模型列表 for model in models['models']: print(model['name']) ``` ### 模型对话(Chat) Ollama 还支持更复杂的对话模式,允许你在多轮对话中保持上下文。以下是一个使用 `chat` 方法的示例: ```python import ollama # 开始对话 response = ollama.chat( model='llama3', messages=[ {'role': 'user', 'content': '你好,你能帮我做什么?'}, {'role': 'assistant', 'content': '你好!我可以帮助你回答问题、提供建议,甚至进行简单的创作。有什么我可以帮你的吗?'}, {'role': 'user', 'content': '你能告诉我关于机器学习的基础知识吗?'} ] ) # 打印响应 print(response['message']['content']) ``` 在这个例子中,`messages` 参数是一个包含多个对话记录的列表,每个记录都有一个 `role` 和 `content` 字段。Ollama 会根据这些对话记录生成相应的回复。 ### 错误处理 在实际应用中,建议添加错误处理逻辑,以应对可能出现的网络问题或模型加载失败等情况: ```python import ollama try: response = ollama.generate(model='llama3', prompt='为什么天空是蓝色的?') print(response['response']) except Exception as e: print(f"发生错误: {e}") ``` ### 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全村之希望

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值