# -*- coding:utf-8 -*-
import numpy as np
import pandas as pd
import pymysql
import sklearn
from sqlalchemy import create_engine
## 加上字符集参数,防止中文乱码
dbconn = pymysql.connect(
host="127.0.0.1",
database="test",
user="root",
password="111111",
port=3306,
charset='utf8')
conn = create_engine('mysql+mysqldb://root:111111@localhost:3306/yes?charset=utf8')
#上面这一大段等同于conn = create_engine('mysql+mysqldb://root:111111@localhost:3306/test?charset=utf8')
# sql语句
sqlcmd = "select * from zhuanzhi"
# 利用pandas 模块导入mysql数据
data = pd.DataFrame(pd.read_sql(sqlcmd, dbconn))
haoma=['a1','b1','c1']
data['date'] = data['date'].astype('int')
print data.dtypes
'''
dataset: DataFrame格式数据集
partionby:分组依据字段
orderby:排序依据字段
asc:是否为升序;1:升序;0:降序
return series格式:序号
'''
#实现row_number()
data['row_number']=data.groupby(data['cust_no'])['date'].rank(ascending=True,method='first')
print data
i = 0
all_doc = []
for element in haoma:
a = data.loc[data['cust_no'] == haoma[i]]
a = a.drop(['cust_no', 'date'], axis=1)
a = np.array(a)
a = a.flatten()
a = a.tolist()
i +=1
all_doc.append(a)
all_doc = pd.DataFrame(all_doc)
all_doc.columns = ['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1']
haoma = pd.DataFrame(haoma)
jieguo = pd.DataFrame(pd.concat([haoma,all_doc],axis=1))#这一步是合并
print jieguo