URAL 2062 Ambitious Experiment (树状数组)

科学家们通过一项涉及粒子链和特殊辐射的实验来验证关于超空间的理解。此实验旨在确认理论预测与实际观测是否一致,进而推进超光速引擎的研发。

During several decades, scientists from planet Nibiru are working to create an engine that would allow spacecrafts to fall into hyperspace and move there with superluminal velocity. To check whether their understanding of properties of hyperspace is right, scientists have developed the following experiment.
A chain of n particles is placed in hyperspace. Positions of particles in the chain are numbered from 1 ton. Initially, ith particle has charge a i.
According to the current theory, if particle number i got special radiation with power d, oscillations would spread by hyperspace and increase by d charge of particles with numbers i, 2 i, 3 i and so on (i.e. with numbers divisible by i).
Using a special device, scientists can direct the radiation of the same power at a segment of adjacent particles. For example, suppose that initially there were 6 particles with zero charges, and scientists have sent radiation with power five to particles with numbers 2 and 3. Then charge of 2nd, 3rd, and 4th particles will increase to five, and charge of 6th particle will increase to ten (the oscillations will reach it twice). Charge of other particles won’t change.
Charge of particles can’t change without impact of the device.
During the experiment, the scientists plan to perform actions of the following types:
  1. Measure current charge of the particle number i.
  2. Direct radiation with power d at particles with numbers from l to r inclusive.
Your program will be given a list of performed actions. For every action of the first type the program should output value of expected charge of the particle calculated in accordance with the current theory described above.
If the expected charges of the particles coincide with charges measured during the experiment, it will turn out that scientists’ understanding of hyperspace is right, and they will be able to start building of the hyperdrives. Then inhabitants of Nibiru will finally meet their brothers from Earth in just a few years!
Input
The first line contains a single integer n — number of particles (1 ≤ n ≤ 3 · 10 5).
The second line contains n integers a i separated by spaces — initial charges of the particles (0 ≤ a i ≤ 106).
The third line contains a single integer q — number of actions in the experiment (1 ≤ q ≤ 3 · 10 5).
Each of the following q lines contain two or four integers — a description of the next action in one of the following formats:
  • i — measure current charge of the particle number i (1 ≤ i ≤ n).
  • l r d — direct radiation with power d at particles with numbers from l to r inclusive (1 ≤ l ≤ r ≤ n, 0 ≤ d ≤ 106).
Output
For each query output the expected charge of the ith particle.
Example
input output
3
1 2 3
2
2 1 3 5
1 2
12
6
1 2 1 4 5 6
5
2 2 4 2
1 3
1 4
2 3 5 1
1 5
3
8
6

对于要求的点他的答案贡献由他的因子产生且因子在区间[l,r]中。对于一个查询ans=a[p]+sigma(sum(j)) (j为p的约数,sum为数组1到j的和)区间修改时仅需修改区间端点值:c[l]+=v,c[r+1]-=v

#include<iostream>
using namespace std;
typedef long long LL;
LL a[300005],c[300005];
int n;
int lowbit(int x)  
{  
    return x&(-x);  
}  
void add(int x,int w)  
{  
    while(x<=n)  
    {  
        c[x]+=w;  
        x+=lowbit(x);  
    }  
}  
LL sum(int x)  
{  
    LL tot=0;  
    while(x)  
    {  
        tot+=c[x];  
        x-=lowbit(x);  
    }  
    return tot;  
}  
int main()
{
	while(~scanf("%d",&n))
	{
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&a[i]);
		}
		int q;
		scanf("%d",&q);
		int type;
		while(q--)
		{
			scanf("%d",&type);
			if(type==2)
			{
				int l,r,v;
				scanf("%d%d%d",&l,&r,&v);
				add(l,v);
				add(r+1,-v);
			}
			else
			{
				int ask;
				scanf("%d",&ask);
				long long ans=a[ask];
				for(int i=1;i*i<=ask;i++)
				{
					if(ask%i==0)
					{
						ans+=sum(i);
						if(i!=ask/i) 
						ans+=sum(ask/i);
					}
				}
				cout<<ans<<endl;
			}
		}
	}
}



【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍基于Matlab代码实现的四轴飞行器动力学建模与仿真方法。研究构建了考虑非线性特性的飞行器数学模型,涵盖姿态动力学与运动学方程,实现了三自由度(滚转、俯仰、偏航)的精确模拟。文中详细阐述了系统建模过程、控制算法设计思路及仿真结果分析,帮助读者深入理解四轴飞行器的飞行动力学特性与控制机制;同时,该模拟器可用于算法验证、控制器设计与教学实验。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及无人机相关领域的工程技术人员,尤其适合从事飞行器建模、控制算法开发的研究生和初级研究人员。; 使用场景及目标:①用于四轴飞行器非线性动力学特性的学习与仿真验证;②作为控制器(如PID、LQR、MPC等)设计与测试的仿真平台;③支持无人机控制系统教学与科研项目开发,提升对姿态控制与系统仿真的理解。; 阅读建议:建议读者结合Matlab代码逐模块分析,重点关注动力学方程的推导与实现方式,动手运行并调试仿真程序,以加深对飞行器姿态控制过程的理解。同时可扩展为六自由度模型或加入外部干扰以增强仿真真实性。
基于分布式模型预测控制DMPC的多智能体点对点过渡轨迹生成研究(Matlab代码实现)内容概要:本文围绕“基于分布式模型预测控制(DMPC)的多智能体点对点过渡轨迹生成研究”展开,重点介绍如何利用DMPC方法实现多智能体系统在复杂环境下的协同轨迹规划与控制。文中结合Matlab代码实现,详细阐述了DMPC的基本原理、数学建模过程以及在多智能体系统中的具体应用,涵盖点对点转移、避障处理、状态约束与通信拓扑等关键技术环节。研究强调算法的分布式特性,提升系统的可扩展性与鲁棒性,适用于多无人机、无人车编队等场景。同时,文档列举了大量相关科研方向与代码资源,展示了DMPC在路径规划、协同控制、电力系统、信号处理等多领域的广泛应用。; 适合人群:具备一定自动化、控制理论或机器人学基础的研究生、科研人员及从事智能系统开发的工程技术人员;熟悉Matlab/Simulink仿真环境,对多智能体协同控制、优化算法有一定兴趣或研究需求的人员。; 使用场景及目标:①用于多智能体系统的轨迹生成与协同控制研究,如无人机集群、无人驾驶车队等;②作为DMPC算法学习与仿真实践的参考资料,帮助理解分布式优化与模型预测控制的结合机制;③支撑科研论文复现、毕业设计或项目开发中的算法验证与性能对比。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注DMPC的优化建模、约束处理与信息交互机制;按文档结构逐步学习,同时参考文中提及的路径规划、协同控制等相关案例,加深对分布式控制系统的整体理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值