18、高级主动学习策略及实现

高级主动学习策略及实现

在主动学习领域,为了更高效地选择样本以提升模型性能,有多种策略和方法可供选择。下面将详细介绍一些高级主动学习策略及其实现方式。

1. 结合不确定性采样和多样性采样

在聚类中计算每个项目的平均不确定性(使用熵),示例代码如下:

score = method(prob_dist.data[0]) # get the specific type of 
# ➥ uncertainty sampling
total_uncertainty += score
count += 1
average_uncertainty = total_uncertainty / count   
if average_uncertainty > highest_average_uncertainty:
    highest_average_uncertainty = average_uncertainty
    most_uncertain_cluster = cluster
samples = most_uncertain_cluster.get_random_members(number)
return samples

你可以根据采样策略尝试不同的聚合统计方法。例如,如果你只对前100个项目进行采样,可以计算每个聚类中最不确定的100个项目的平均熵,而不是整个聚类中每个项目的平均熵。可以使用以下命令尝试此技术:

python active_learning.py --high_uncertai
【评估多目标跟踪方法】9个高度敏捷目标在编队中的轨迹和测量研究(Matlab代码实现)内容概要:本文围绕“评估多目标跟踪方法”,重点研究9个高度敏捷目标在编队飞行中的轨迹生成与测量过程,并提供完整的Matlab代码实现。文中详细模拟了目标的动态行为、运动约束及编队结构,通过仿真获取目标的状态信息与观测数据,用于验证和比较不同多目标跟踪算法的性能。研究内容涵盖轨迹建模、噪声处理、传感器测量模拟以及数据可视化等关键技术环节,旨在为雷达、无人机编队、自动驾驶等领域的多目标跟踪系统提供可复现的测试基准。; 适合人群:具备一定Matlab编程基础,从事控制工程、自动化、航空航天、智能交通或人工智能等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多目标跟踪算法(如卡尔曼滤波、粒子滤波、GM-CPHD等)的性能评估与对比实验;②作为无人机编队、空中交通监控等应用场景下的轨迹仿真与传感器数据分析的教学与研究平台;③支持对高度机动目标在复杂编队下的可观测性与跟踪精度进行深入分析。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注轨迹生成逻辑与测量模型构建部分,可通过修改目标数量、运动参数或噪声水平来拓展实验场景,进一步提升对多目标跟踪系统设计与评估的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值