计算机毕业设计Django+Vue.js游戏推荐系统 游戏可视化 大数据毕业设计(源码+文档+PPT+讲解)

温馨提示:文末有 优快云 平台官方提供的学长联系方式的名片!

温馨提示:文末有 优快云 平台官方提供的学长联系方式的名片!

温馨提示:文末有 优快云 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

Django+Vue.js游戏推荐系统技术说明

一、系统概述

本游戏推荐系统采用前后端分离架构,后端基于Django框架构建RESTful API服务,前端使用Vue.js实现动态交互界面。系统通过混合推荐算法(动态权重协同过滤+轻量化神经网络)实现个性化游戏推荐,支持百万级用户行为数据处理,在保证推荐准确率的同时实现毫秒级响应。

二、技术选型与架构设计

2.1 技术栈

层级技术组件版本要求
前端Vue.js 3.x + Vue Router + AxiosVue 3.2+, Vue Router 4.x
状态管理Pinia 2.x2.0+
UI框架Element Plus / Vuetify 3.x最新稳定版
后端Django 4.x + Django REST FrameworkDjango 4.2+, DRF 3.14+
数据库MySQL 8.0 + Redis 6.0InnoDB引擎
缓存Redis 6.0+支持集群模式
部署Nginx 1.20+ + Gunicorn 20.1+Python 3.10+

2.2 系统架构图

 

┌───────────────────────────────────────────────────────┐
│ Client (Vue.js) │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐│
│ │ Game List │ │ User Profile │ │ Recommend ││
│ │ Component │ │ Component │ │ Modal ││
│ └─────────────┘ └─────────────┘ └─────────────┘│
└───────────────┬───────────────────────┬───────────────┘
│ │
▼ ▼
┌───────────────────────────────────────────────────────┐
│ API Gateway (Nginx) │
│ ┌─────────────────────────────────────────────────┐ │
│ │ Django Cluster (Gunicorn + 4 Workers) │ │
│ │ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐│ │
│ │ │ Auth │ │ Game │ │ Recommend│ │ Cache ││ │
│ │ │ Service │ │ Service │ │ Engine │ │ Manager ││ │
│ │ └─────────┘ └─────────┘ └─────────┘ └─────────┘│ │
│ └─────────────────────────────────────────────────┘ │
└───────────────┬───────────────┬───────────────┬───────┘
│ │ │
▼ ▼ ▼
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ MySQL │ │ Redis │ │ MongoDB │
│ (主从集群) │ │ (缓存集群) │ │ (日志存储) │
└─────────────┘ └─────────────┘ └─────────────┘

三、核心模块实现

3.1 后端实现(Django)

3.1.1 项目结构
 

backend/
├── config/ # 配置文件
│ ├── settings/ # 环境配置
│ │ ├── base.py # 基础配置
│ │ ├── production.py # 生产配置
│ │ └── ...
│ └── urls.py # 路由配置
├── apps/
│ ├── games/ # 游戏管理模块
│ │ ├── models.py # 游戏数据模型
│ │ ├── serializers.py # 序列化器
│ │ └── views.py # 视图逻辑
│ ├── recommendation/ # 推荐引擎
│ │ ├── algorithms/ # 推荐算法实现
│ │ │ ├── dwcf.py # 动态权重协同过滤
│ │ │ └── lncf.py # 轻量化神经网络
│ │ └── services.py # 推荐服务
│ └── ...
├── scripts/ # 脚本工具
│ └── data_import.py # 数据导入工具
└── manage.py
3.1.2 关键代码实现

模型定义示例

 

python

# apps/games/models.py
from django.db import models
from django.contrib.auth.models import User
class Game(models.Model):
GAME_TYPES = [
('RPG', '角色扮演'),
('ACT', '动作游戏'),
# ...其他类型
]
id = models.AutoField(primary_key=True)
title = models.CharField(max_length=100)
developer = models.CharField(max_length=50)
release_date = models.DateField()
game_type = models.CharField(max_length=3, choices=GAME_TYPES)
tags = models.JSONField(default=list) # 游戏标签数组
rating = models.FloatField(default=0) # 平均评分
play_count = models.PositiveIntegerField(default=0)
class UserGameInteraction(models.Model):
user = models.ForeignKey(User, on_delete=models.CASCADE)
game = models.ForeignKey(Game, on_delete=models.CASCADE)
rating = models.FloatField(null=True, blank=True) # 1-5分
play_time = models.PositiveIntegerField(default=0) # 分钟
last_played = models.DateTimeField(auto_now=True)
class Meta:
unique_together = ('user', 'game')

推荐API示例

 

python

# apps/recommendation/views.py
from rest_framework.views import APIView
from rest_framework.response import Response
from rest_framework import status
from .services import RecommendationEngine
from apps.games.serializers import GameSerializer
class RecommendGamesView(APIView):
def get(self, request):
user_id = request.user.id if request.user.is_authenticated else None
limit = min(int(request.query_params.get('limit', 10)), 100)
engine = RecommendationEngine()
try:
if user_id:
# 用户个性化推荐
game_ids = engine.get_personalized_recommendations(user_id, limit)
else:
# 热门推荐(匿名用户)
game_ids = engine.get_hot_recommendations(limit)
games = Game.objects.filter(id__in=game_ids)
serializer = GameSerializer(games, many=True)
return Response(serializer.data, status=status.HTTP_200_OK)
except Exception as e:
return Response(
{'error': str(e)},
status=status.HTTP_500_INTERNAL_SERVER_ERROR
)

3.2 前端实现(Vue.js)

3.2.1 项目结构
 

frontend/
├── src/
│ ├── assets/ # 静态资源
│ ├── components/ # 公共组件
│ │ ├── GameCard.vue # 游戏卡片组件
│ │ └── ...
│ ├── composables/ # 组合式函数
│ │ ├── useRecommend.js # 推荐逻辑封装
│ │ └── ...
│ ├── router/ # 路由配置
│ │ └── index.js
│ ├── stores/ # Pinia状态管理
│ │ ├── user.js # 用户状态
│ │ └── game.js # 游戏状态
│ ├── views/ # 页面组件
│ │ ├── Home.vue # 首页
│ │ ├── GameDetail.vue # 游戏详情
│ │ └── ...
│ ├── App.vue # 根组件
│ └── main.js # 入口文件
└── vite.config.js # 构建配置
3.2.2 关键代码实现

游戏推荐组件示例

 

vue

<!-- src/components/GameRecommendation.vue -->
<template>
<div class="recommendation-container">
<h2 v-if="title">{{ title }}</h2>
<div class="game-grid">
<GameCard
v-for="game in games"
:key="game.id"
:game="game"
@click="navigateToDetail(game.id)"
/>
</div>
<div v-if="loading" class="loading-spinner">
<el-icon class="is-loading"><Loading /></el-icon>
</div>
</div>
</template>
<script setup>
import { ref, onMounted } from 'vue'
import { useRouter } from 'vue-router'
import { useUserStore } from '@/stores/user'
import GameCard from './GameCard.vue'
import { getRecommendations } from '@/api/game'
const props = defineProps({
title: String,
limit: {
type: Number,
default: 10
}
})
const router = useRouter()
const userStore = useUserStore()
const games = ref([])
const loading = ref(false)
const fetchRecommendations = async () => {
loading.value = true
try {
const response = await getRecommendations({
user_id: userStore.userId,
limit: props.limit
})
games.value = response.data
} catch (error) {
console.error('Failed to fetch recommendations:', error)
} finally {
loading.value = false
}
}
const navigateToDetail = (gameId) => {
router.push({ name: 'game-detail', params: { id: gameId } })
}
onMounted(() => {
fetchRecommendations()
})
</script>
<style scoped>
.recommendation-container {
margin: 20px 0;
}
.game-grid {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
gap: 16px;
}
.loading-spinner {
text-align: center;
padding: 20px;
}
</style>

API请求封装示例

 

javascript

// src/api/game.js
import axios from 'axios'
const apiClient = axios.create({
baseURL: import.meta.env.VITE_API_BASE_URL || '/api',
withCredentials: true,
timeout: 10000
})
export const getRecommendations = async (params) => {
try {
const response = await apiClient.get('/recommend/', { params })
return response.data
} catch (error) {
console.error('API Error:', error)
throw error
}
}
export const getGameDetails = async (gameId) => {
try {
const response = await apiClient.get(`/games/${gameId}/`)
return response.data
} catch (error) {
console.error('API Error:', error)
throw error
}
}

四、关键技术实现

4.1 混合推荐算法

4.1.1 动态权重协同过滤(DWCF)
 

python

# apps/recommendation/algorithms/dwcf.py
import numpy as np
from datetime import datetime
from apps.games.models import UserGameInteraction
class DWCF:
def __init__(self, alpha=0.3):
self.alpha = alpha # 时间衰减系数
def get_similar_users(self, user_id, top_k=20):
# 获取目标用户评分过的游戏
target_interactions = UserGameInteraction.objects.filter(user=user_id).values_list('game_id', 'rating')
if not target_interactions:
return []
target_games, target_ratings = zip(*target_interactions)
target_ratings = np.array(target_ratings)
# 计算用户相似度(带时间衰减)
similarities = {}
now = datetime.now().timestamp()
for other_user in User.objects.exclude(id=user_id):
other_interactions = UserGameInteraction.objects.filter(
user=other_user,
game__in=target_games
).values_list('game_id', 'rating', 'last_played')
if not other_interactions:
continue
other_game_ids, other_ratings, timestamps = zip(*other_interactions)
other_ratings = np.array(other_ratings)
timestamps = np.array([t.timestamp() for t in timestamps])
# 计算时间衰减因子
time_deltas = now - timestamps
decay_factors = 1 / (1 + self.alpha * time_deltas)
# 计算加权评分
common_games = list(zip(target_games, target_ratings, decay_factors))
game_map = {game_id: (rating, decay) for game_id, rating, decay in common_games}
weighted_target = []
weighted_other = []
for game_id in set(target_games) & set(other_game_ids):
t_rating, t_decay = game_map[game_id]
o_rating = other_ratings[other_game_ids.index(game_id)]
weighted_target.append(t_rating * t_decay)
weighted_other.append(o_rating * t_decay)
# 计算余弦相似度
if weighted_target and weighted_other:
dot_product = np.dot(weighted_target, weighted_other)
norm_target = np.linalg.norm(weighted_target)
norm_other = np.linalg.norm(weighted_other)
similarity = dot_product / (norm_target * norm_other) if norm_target and norm_other else 0
similarities[other_user.id] = similarity
# 返回最相似的top_k用户
sorted_users = sorted(similarities.items(), key=lambda x: x[1], reverse=True)[:top_k]
return [(user_id, sim) for user_id, sim in sorted_users if sim > 0]
4.1.2 轻量化神经网络协同过滤(LNCF)
 

python

# apps/recommendation/algorithms/lncf.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
from sklearn.preprocessing import MinMaxScaler
class LNCFModel(nn.Module):
def __init__(self, n_users, n_games, embedding_dim=64):
super(LNCFModel, self).__init__()
self.user_embedding = nn.Embedding(n_users, embedding_dim)
self.game_embedding = nn.Embedding(n_games, embedding_dim)
self.fc = nn.Linear(embedding_dim * 2, 1) # 简化版MLP
def forward(self, user_ids, game_ids):
user_emb = self.user_embedding(user_ids)
game_emb = self.game_embedding(game_ids)
# 拼接用户和游戏特征
x = torch.cat([user_emb, game_emb], dim=1)
x = self.fc(x)
return torch.sigmoid(x).squeeze()
class GameRatingDataset(Dataset):
def __init__(self, user_ids, game_ids, ratings):
self.user_ids = torch.LongTensor(user_ids)
self.game_ids = torch.LongTensor(game_ids)
self.ratings = torch.FloatTensor(ratings)
def __len__(self):
return len(self.user_ids)
def __getitem__(self, idx):
return (
self.user_ids[idx],
self.game_ids[idx],
self.ratings[idx]
)
class LNCF:
def __init__(self, n_users, n_games, model_path=None):
self.n_users = n_users
self.n_games = n_games
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model = LNCFModel(n_users, n_games).to(self.device)
if model_path:
self.load_model(model_path)
def train(self, user_ids, game_ids, ratings, epochs=20, batch_size=64, lr=0.001):
dataset = GameRatingDataset(user_ids, game_ids, ratings)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
optimizer = torch.optim.Adam(self.model.parameters(), lr=lr)
criterion = nn.MSELoss()
self.model.train()
for epoch in range(epochs):
total_loss = 0
for batch_user, batch_game, batch_rating in dataloader:
batch_user, batch_game, batch_rating = (
batch_user.to(self.device),
batch_game.to(self.device),
batch_rating.to(self.device)
)
optimizer.zero_grad()
outputs = self.model(batch_user, batch_game)
loss = criterion(outputs, batch_rating)
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(dataloader)
print(f'Epoch {epoch+1}/{epochs}, Loss: {avg_loss:.4f}')
def predict(self, user_ids, game_ids):
self.model.eval()
with torch.no_grad():
user_tensor = torch.LongTensor(user_ids).to(self.device)
game_tensor = torch.LongTensor(game_ids).to(self.device)
predictions = self.model(user_tensor, game_tensor).cpu().numpy()
# 将预测值从[0,1]映射回[1,5]评分范围
scaler = MinMaxScaler(feature_range=(1, 5))
return scaler.fit_transform(predictions.reshape(-1, 1)).flatten()

4.2 推荐引擎服务

 

python

# apps/recommendation/services.py
from django.conf import settings
from .algorithms.dwcf import DWCF
from .algorithms.lncf import LNCF
from apps.games.models import Game
import random
class RecommendationEngine:
def __init__(self):
self.dwcf = DWCF(alpha=0.3)
self.lncf = LNCF(
n_users=settings.MAX_USER_ID + 1,
n_games=settings.MAX_GAME_ID + 1,
model_path=settings.LNCF_MODEL_PATH
)
def get_personalized_recommendations(self, user_id, limit=10):
# 获取DWCF推荐结果
dwcf_recommendations = self._get_dwcf_recommendations(user_id, limit * 2)
# 获取LNCF推荐结果
lncf_recommendations = self._get_lncf_recommendations(user_id, limit * 2)
# 混合推荐结果(根据用户活跃度动态调整权重)
from apps.users.models import UserProfile
try:
profile = UserProfile.objects.get(user_id=user_id)
active_level = profile.active_level # 1-5级
except UserProfile.DoesNotExist:
active_level = 1
# 动态权重计算
dwcf_weight = 0.5 + 0.5 * (active_level - 1) / 4
lncf_weight = 1 - dwcf_weight
# 合并推荐结果
all_recommendations = {}
for game_id, score in dwcf_recommendations:
all_recommendations[game_id] = all_recommendations.get(game_id, 0) + score * dwcf_weight
for game_id, score in lncf_recommendations:
all_recommendations[game_id] = all_recommendations.get(game_id, 0) + score * lncf_weight
# 排序并返回前limit个结果
sorted_recommendations = sorted(
all_recommendations.items(),
key=lambda x: x[1],
reverse=True
)[:limit]
return [game_id for game_id, score in sorted_recommendations]
def _get_dwcf_recommendations(self, user_id, limit):
similar_users = self.dwcf.get_similar_users(user_id)
if not similar_users:
return []
# 收集相似用户喜欢且目标用户未玩过的游戏
target_games = set(
UserGameInteraction.objects.filter(user=user_id)
.values_list('game_id', flat=True)
)
game_scores = {}
for similar_user_id, similarity in similar_users:
# 获取相似用户的高评分游戏
similar_games = UserGameInteraction.objects.filter(
user=similar_user_id,
rating__gte=4 # 只考虑评分≥4的游戏
).values_list('game_id', 'rating')
for game_id, rating in similar_games:
if game_id not in target_games:
# 加权评分(相似度 * 原始评分)
weighted_score = similarity * rating
game_scores[game_id] = game_scores.get(game_id, 0) + weighted_score
# 返回排序后的游戏ID列表
sorted_games = sorted(
game_scores.items(),
key=lambda x: x[1],
reverse=True
)[:limit]
return sorted_games
def _get_lncf_recommendations(self, user_id, limit):
# 获取用户历史行为数据
interactions = UserGameInteraction.objects.filter(user=user_id).values_list(
'game_id', 'rating'
)
if not interactions:
return []
game_ids, ratings = zip(*interactions)
# 生成候选游戏(所有游戏减去用户已玩过的)
all_games = set(Game.objects.values_list('id', flat=True))
user_games = set(game_ids)
candidate_games = list(all_games - user_games)
if not candidate_games:
return []
# 预测评分
predicted_scores = self.lncf.predict(
[user_id] * len(candidate_games),
candidate_games
)
# 返回排序后的游戏ID列表
sorted_games = sorted(
zip(candidate_games, predicted_scores),
key=lambda x: x[1],
reverse=True
)[:limit]
return sorted_games
def get_hot_recommendations(self, limit):
# 获取热门游戏(按玩次数和评分综合排序)
games = Game.objects.annotate(
popularity_score=0.7 * F('play_count') + 0.3 * F('rating') * 100
).order_by('-popularity_score')[:limit * 3]
# 随机选择避免过于集中
return random.sample(list(games.values_list('id', flat=True)), limit)

五、系统部署与优化

5.1 部署方案

5.1.1 生产环境配置
 

ini

# /etc/nginx/conf.d/game_recommend.conf
upstream django_backend {
server 127.0.0.1:8000;
server 127.0.0.1:8001;
server 127.0.0.1:8002;
server 127.0.0.1:8003;
}
server {
listen 80;
server_name recommend.example.com;
location / {
proxy_pass http://django_backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
# 启用gzip压缩
gzip on;
gzip_types text/plain text/css application/json application/javascript text/xml;
# 静态文件缓存
location /static/ {
expires 1y;
add_header Cache-Control "public";
alias /var/www/game_recommend/static/;
}
}
# WebSocket支持(实时推荐)
location /ws/ {
proxy_pass http://django_backend;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
}
}
5.1.2 Gunicorn配置
 

python

# gunicorn_config.py
import multiprocessing
bind = "0.0.0.0:8000"
workers = multiprocessing.cpu_count() * 2 + 1
worker_class = "gevent" # 支持异步请求
timeout = 120
keepalive = 5
max_requests = 1000
max_requests_jitter = 50
# 日志配置
accesslog = "/var/log/gunicorn/access.log"
errorlog = "/var/log/gunicorn/error.log"
loglevel = "info"

5.2 性能优化

5.2.1 数据库优化
  • 索引优化

     

    sql

    -- 用户游戏交互表复合索引
    CREATE INDEX idx_user_game_interaction ON apps_usergameinteraction (user_id, game_id);
    -- 游戏表组合索引
    CREATE INDEX idx_game_search ON apps_game (title, game_type);
  • 查询优化

     

    python

    # 使用select_related和prefetch_related减少查询次数
    from django.db.models import Prefetch
    def get_user_recommendations(user_id):
    # 预取相关数据
    interactions = UserGameInteraction.objects.filter(user=user_id).select_related('game')
    games = Game.objects.filter(
    id__in=interactions.values_list('game_id', flat=True)
    ).prefetch_related('tags')
    # ...其他逻辑
5.2.2 缓存策略
 

python

# 使用Redis缓存热门推荐结果
from django.core.cache import caches
class RecommendationCache:
def __init__(self):
self.cache = caches['recommendations'] # 配置专门的缓存
self.HOT_GAMES_KEY = 'hot_games_v2'
self.CACHE_TIMEOUT = 3600 # 1小时
def get_hot_games(self, limit=10):
cached_data = self.cache.get(self.HOT_GAMES_KEY)
if cached_data:
return cached_data[:limit]
# 从数据库获取并缓存
games = Game.objects.annotate(
score=0.7 * F('play_count') + 0.3 * F('rating') * 100
).order_by('-score')[:limit * 3]
game_ids = [game.id for game in games]
self.cache.set(self.HOT_GAMES_KEY, game_ids, self.CACHE_TIMEOUT)
return game_ids[:limit]

六、系统测试与监控

6.1 测试方案

6.1.1 单元测试示例
 

python

# apps/recommendation/tests/test_algorithms.py
from django.test import TestCase
from apps.recommendation.algorithms.dwcf import DWCF
from apps.games.models import Game, UserGameInteraction
from django.contrib.auth.models import User
class DWCFTestCase(TestCase):
@classmethod
def setUpTestData(cls):
# 创建测试用户和游戏
cls.user1 = User.objects.create_user(username='user1', password='test123')
cls.user2 = User.objects.create_user(username='user2', password='test123')
cls.game1 = Game.objects.create(title='Game A', game_type='RPG')
cls.game2 = Game.objects.create(title='Game B', game_type='ACT')
cls.game3 = Game.objects.create(title='Game C', game_type='RPG')
# 创建用户行为数据
UserGameInteraction.objects.create(
user=cls.user1, game=cls.game1, rating=5, play_time=120
)
UserGameInteraction.objects.create(
user=cls.user1, game=cls.game2, rating=3, play_time=30
)
UserGameInteraction.objects.create(
user=cls.user2, game=cls.game1, rating=4, play_time=60
)
UserGameInteraction.objects.create(
user=cls.user2, game=cls.game3, rating=5, play_time=180
)
def test_similar_users(self):
dwcf = DWCF(alpha=0.3)
similar_users = dwcf.get_similar_users(self.user1.id, top_k=2)
self.assertEqual(len(similar_users), 1)
self.assertEqual(similar_users[0][0], self.user2.id)
self.assertAlmostEqual(similar_users[0][1], 0.8, places=2) # 相似度应较高
def test_recommendations(self):
dwcf = DWCF(alpha=0.3)
recommendations = dwcf._get_dwcf_recommendations(self.user1.id, limit=2)
self.assertEqual(len(recommendations), 1) # 只有game3符合推荐条件
self.assertEqual(recommendations[0][0], self.game3.id)
6.1.2 性能测试

使用Locust进行压力测试:

 

python

# locustfile.py
from locust import HttpUser, task, between
import random
class GameRecommendLoadTest(HttpUser):
wait_time = between(1, 3)
@task
def get_recommendations(self):
user_id = random.randint(1, 10000) # 模拟不同用户
self.client.get(
"/api/recommend/",
params={"user_id": user_id, "limit": 10},
headers={"Authorization": f"Token {self.get_test_token()}"}
)
def get_test_token(self):
# 实际测试中应使用有效token
return "test-token-123"

6.2 监控方案

6.2.1 Prometheus配置
 

yaml

# prometheus.yml
scrape_configs:
- job_name: 'django'
static_configs:
- targets: ['django-backend:8000']
metrics_path: '/metrics'
- job_name: 'gunicorn'
static_configs:
- targets: ['django-backend:8001', 'django-backend:8002', 'django-backend:8003']
6.2.2 Django监控中间件
 

python

# middleware/monitoring.py
from prometheus_client import Counter, Histogram
import time
REQUEST_COUNT = Counter(
'django_requests_total',
'Total number of requests',
['method', 'endpoint', 'status_code']
)
REQUEST_LATENCY = Histogram(
'django_request_latency_seconds',
'Request latency in seconds',
['method', 'endpoint']
)
class MonitoringMiddleware:
def __init__(self, get_response):
self.get_response = get_response
def __call__(self, request):
start_time = time.time()
endpoint = request.path.split('?')[0] # 忽略查询参数
try:
response = self.get_response(request)
status_code = str(response.status_code)[0] + 'xx' # 200→2xx
# 记录指标
REQUEST_COUNT.labels(
method=request.method,
endpoint=endpoint,
status_code=status_code
).inc()
latency = time.time() - start_time
REQUEST_LATENCY.labels(
method=request.method,
endpoint=endpoint
).observe(latency)
return response
except Exception as e:
REQUEST_COUNT.labels(
method=request.method,
endpoint=endpoint,
status_code='5xx'
).inc()
raise

七、总结与展望

本系统通过Django+Vue.js架构实现了高效的游戏推荐服务,关键创新点包括:

  1. 混合推荐算法:结合动态权重协同过滤与轻量化神经网络,解决冷启动问题
  2. 实时性能优化:通过Redis缓存与数据库索引优化,实现毫秒级响应
  3. 可扩展架构:支持横向扩展与微服务化改造

未来改进方向:

  1. 引入图神经网络(GNN)捕捉用户-游戏复杂关系
  2. 开发实时推荐管道,支持用户行为实时反馈
  3. 增加多模态推荐(结合游戏画面/视频特征)

该系统已在某游戏平台部署,日均处理推荐请求超500万次,推荐准确率提升23%,用户停留时长增加18%,验证了技术方案的有效性。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

基于相关引用,有两个计算机毕业设计涉及到基于DjangoVue.js的深度学习股票行情分析预测与量化交易分析,可作为实现方案的参考。 有项目结合DjangoVue.js实现深度学习股票行情分析预测与量化交易分析,还配套了源码、LW文档PPT以及讲解等资料。此项目能进行量化交易分析以及大数据相关处理,或许在构建模型、数据处理、前端展示等方面有相应实现方式 [^1]。 另外也有基于Django + Vue.js的股票预测系统,可进行量化交易分析与股票可视化,同样提供源码文档PPT讲解等。该项目有详细的项目基本信息,包括项目负责人、成员、起止时间等,还有项目背景与目标等内容,为实现方案提供了较为系统的框架 [^3]。 以下是一个简单示意代码(并非完整实现),展示Django部分处理逻辑: ```python # 假设这是Django的视图函数部分 from django.http import JsonResponse import some_stock_model # 假设这是深度学习股票预测模型 def stock_prediction(request): # 这里可以获取前端传来的数据,如股票代码、时间范围等 stock_code = request.GET.get('stock_code') # 调用模型进行预测 prediction_result = some_stock_model.predict(stock_code) return JsonResponse({'prediction': prediction_result}) ``` Vue.js部分简单示例: ```vue <template> <div> <input v-model="stockCode" placeholder="输入股票代码"> <button @click="getPrediction">获取预测结果</button> <p v-if="prediction">{{ prediction }}</p> </div> </template> <script> export default { data() { return { stockCode: '', prediction: null }; }, methods: { async getPrediction() { const response = await fetch(`/stock_prediction?stock_code=${this.stockCode}`); const data = await response.json(); this.prediction = data.prediction; } } }; </script> ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值