核心算法代码分享如下:
import sys
from db import cnn
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
def predict1():
sql = "select `stime`, `num` as value from tables04" \
" order by stime asc "
with cnn.cursor() as cursor:
cursor.execute(sql)
print(sql)
names = []
y = []
for line in cursor.fetchall():
# print(line)
y.append(line[1])
names.append(line[0])
y = y[::-1]
X = [1, 2, 3, 4, 5]
X = pd.DataFrame(X)
X = X.values
Poly_regressor = PolynomialFeatures(degree=2)
Poly_X = Poly_regressor.fit_transform(X)
regressor = LinearRegression()
regressor.fit(Poly_X, y)
p1 = regressor.predict(Poly_regressor.fit_transform([[8]]))
p2 = regressor.predict(Poly_regressor.fit_transform([[9]]))
p3 = regressor.predict(Poly_regressor.fit_transform([[10]]))
r = []
r.append(round(float(p1[0]),2))
r.append(round(float(p2[0]),2))
r.append(round(float(p3[0]),2))
return r
def predict2():
sql = "select `stime`, `num` as value from tables04" \
" order by stime asc "
with cnn.cursor() as cursor:
cursor.execute(sql)
print(sql)
names = []
y = []
for line in cursor.fetchall():
# print(line)
y.append(line[1])
names.append(line[0])
y = y[::-1]
X = [1, 2, 3, 4, 5]
X = pd.DataFrame(X)
X = X.values
Poly_regressor = PolynomialFeatures(degree=2)
Poly_X = Poly_regressor.fit_transform(X)
regressor = LinearRegression()
regressor.fit(Poly_X, y)
p1 = regressor.predict(Poly_regressor.fit_transform([[8]]))
p2 = regressor.predict(Poly_regressor.fit_transform([[9]]))
p3 = regressor.predict(Poly_regressor.fit_transform([[10]]))
r = []
r.append(round(float(p1[0]),2))
r.append(round(float(p2[0]),2))
r.append(round(float(p3[0]),2))
return r
def predict3():
sql = "select `stime`, `num` as value from tables04" \
" order by stime asc "
with cnn.cursor() as cursor:
cursor.execute(sql)
print(sql)
names = []
y = []
for line in cursor.fetchall():
# print(line)
y.append(line[1])
names.append(line[0])
y = y[::-1]
X = [1, 2, 3, 4, 5]
X = pd.DataFrame(X)
X = X.values
Poly_regressor = PolynomialFeatures(degree=2)
Poly_X = Poly_regressor.fit_transform(X)
regressor = LinearRegression()
regressor.fit(Poly_X, y)
p1 = regressor.predict(Poly_regressor.fit_transform([[8]]))
p2 = regressor.predict(Poly_regressor.fit_transform([[9]]))
p3 = regressor.predict(Poly_regressor.fit_transform([[10]]))
r = []
r.append(round(float(p1[0]),2))
r.append(round(float(p2[0]),2))
r.append(round(float(p3[0]),2))
return r
def predict4():
sql = "select `stime`, `num` as value from tables04" \
" order by stime asc "
with cnn.cursor() as cursor:
cursor.execute(sql)
print(sql)
names = []
y = []
for line in cursor.fetchall():
# print(line)
y.append(line[1])
names.append(line[0])
y = y[::-1]
X = [1, 2, 3, 4, 5]
X = pd.DataFrame(X)
X = X.values
Poly_regressor = PolynomialFeatures(degree=2)
Poly_X = Poly_regressor.fit_transform(X)
regressor = LinearRegression()
regressor.fit(Poly_X, y)
p1 = regressor.predict(Poly_regressor.fit_transform([[8]]))
p2 = regressor.predict(Poly_regressor.fit_transform([[9]]))
p3 = regressor.predict(Poly_regressor.fit_transform([[10]]))
r = []
r.append(round(float(p1[0]),2))
r.append(round(float(p2[0]),2))
r.append(round(float(p3[0]),2))
return r
if __name__ == '__main__':
#name = sys.argv[1]
ret = []
r1 = predict1()
r2 = predict2()
r3 = predict3()
r4 = predict4()
ret.append(r1)
ret.append(r2)
ret.append(r3)
ret.append(r4)
print(ret)
print(r1)
print(int(r1[0]))
print(int(r1[1]))
print(int(r1[2]))
sql_day01="replace into tables04(stime,num) values (%s,%s)"
data_day01 =('预测1',int(r1[0]))
sql_day02="replace into tables04(stime,num) values (%s,%s)"
data_day02 = ('预测2', int(r1[1]))
sql_day03="replace into tables04(stime,num) values (%s,%s)"
data_day03 = ('预测3', int(r1[2]))
cur=cnn.cursor()
cur.execute(sql_day01,data_day01)
cur.execute(sql_day02,data_day02)
cur.execute(sql_day03,data_day03)
cnn.commit()
cur.close()






能够准确预测飞机票价格、生成可视化页面,满足用户的需求。具体的预期成果包括
1.高性能的数据处理:利用Hadoop+Hive的分布式计算框架和数据存储技术,预期成果应具有高性能的数据处理能力,能够处理和分析大规模的机票价格数据,提供快速高效的预测和可视化结果。
2.准确的预测结果:通过使用Hadoop+Hive的大数据处理和分析能力,预期成果将提供准确的机票价格预测结果。这将帮助用户在选择出行时间和购买机票时更加明智和高效,从而节省旅行成本。
3.可视化展示:利用可视化技术将机票价格的预测结果以直观的图表、地图等形式展示给用户,使用户更好地理解机票价格的变化趋势和规律,帮助他们选择合适的出行时间和机票购买策略。

被折叠的 条评论
为什么被折叠?



