[矩阵快速幂]hdu1575 Tr A

hdu1575 Tr A

题意:
求矩阵A的k次幂,主对角线之和%9973
思路:
裸的矩阵快速幂,具体见模板

代码:

/**************************************************************
    Problem: HDU_1575
    User: soundwave
    Language: C++
    Result: Accepted
    Time: 0ms
    Memory: 1576KB
****************************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <stdio.h>
#include <vector>

using namespace std;
typedef vector<int> Vint;
typedef vector<Vint> VVint;
typedef __int64 LL;
const int MOD = 9973;
//矩阵乘法
VVint calc(VVint &A, VVint &B){
    VVint C(A.size(),Vint(A.size()));
    for(int i=0; i<A.size(); i++)
    for(int j=0; j<B[0].size(); j++)
    for(int k=0; k<B.size(); k++)
        C[i][j] = (C[i][j] + (A[i][k]*B[k][j])) % MOD;
    return C;
}
//二分快速幂
VVint my_pow(VVint &A, int c){
    VVint B(A.size(),Vint(A.size()));
    for(int i=0; i<A.size(); i++)
        B[i][i] = 1;
    if(c==1) return A;
    while(c>0){
        if(c&1) B = calc(B,A);
        A = calc(A,A);
        c>>=1;
    }
    return B;
}
int main(){
    int t, n, k;
    scanf("%d", &t);
    while(t-->0){
        scanf("%d%d", &n, &k);
        VVint A(n,Vint(n));
        for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
            scanf("%d", &A[i][j]);
        A = my_pow(A,k);
        LL re=0;
        for(int i=0; i<n; i++)
            re += A[i][i];
        printf("%I64d\n", re%MOD);
    }
    return 0;
}


资源下载链接为: https://pan.quark.cn/s/3d8e22c21839 随着 Web UI 框架(如 EasyUI、JqueryUI、Ext、DWZ 等)的不断发展与成熟,系统界面的统一化设计逐渐成为可能,同时代码生成器也能够生成符合统一规范的界面。在这种背景下,“代码生成 + 手工合并”的半智能开发模式正逐渐成为新的开发趋势。通过代码生成器,单表数据模型以及一对多数据模型的增删改查功能可以被直接生成并投入使用,这能够有效节省大约 80% 的开发工作量,从而显著提升开发效率。 JEECG(J2EE Code Generation)是一款基于代码生成器的智能开发平台。它引领了一种全新的开发模式,即从在线编码(Online Coding)到代码生成器生成代码,再到手工合并(Merge)的智能开发流程。该平台能够帮助开发者解决 Java 项目中大约 90% 的重复性工作,让开发者可以将更多的精力集中在业务逻辑的实现上。它不仅能够快速提高开发效率,帮助公司节省大量的人力成本,同时也保持了开发的灵活性。 JEECG 的核心宗旨是:对于简单的功能,可以通过在线编码配置来实现;对于复杂的功能,则利用代码生成器生成代码后,再进行手工合并;对于复杂的流程业务,采用表单自定义的方式进行处理,而业务流程则通过工作流来实现,并且可以扩展出任务接口,供开发者编写具体的业务逻辑。通过这种方式,JEECG 实现了流程任务节点和任务接口的灵活配置,既保证了开发的高效性,又兼顾了项目的灵活性和可扩展性。
### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值