Elimination Round 2-A. Search for Pretty Integers

本文介绍了一道编程题“寻找最小漂亮整数”的解决方法。题目要求从两个非零数字列表中找出至少包含每个列表一个元素的最小正整数。通过排序和遍历列表的方式,实现了有效的解决方案。

  A. Search for Pretty Integers

题目链接:http://codeforces.com/contest/870/problem/A

Description

You are given two lists of non-zero digits.
Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?

Input
The first line contains two integers n and m (1 ≤ n, m ≤ 9) — the lengths of the first and the second lists, respectively.

The second line contains n distinct digits a1, a2, ..., an (1 ≤ ai ≤ 9) — the elements of the first list.

The third line contains m distinct digits b1, b2, ..., bm (1 ≤ bi ≤ 9) — the elements of the second list.

Output
Print the smallest pretty integer.

Examples
input
2 3
4 2
5 7 6
output
25
input
8 8
1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1
output
1
Note
In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.

In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
题意:给定两个数组,找到存在于两个数组的数组合成的最小数(重复算一个)。

题解;数据范围很小,直接暴力数组排序求解即可。

AC代码:

#include <iostream>
#include <algorithm>
using namespace std;
int n,m;
int min1,min2;
const int maxn = 15;
int a[maxn],b[maxn];
int main()
{
	cin>>n>>m;
	int min1=11;
	int min2=11;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
	}
	for(int j=1;j<=m;j++)
	{
		cin>>b[j];
	}
	sort(a+1,a+n+1);
	sort(b+1,b+m+1);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{
			if(a[i]==b[j]&&min1>a[i])
			{
				min2=i;
				min1=a[i];
			}
		}
	if(min2!=11)cout<<a[min2]<<endl;
	else
	{
		int t=0;
		if(a[1]<b[1])
		{
			t=a[1];
			a[1]=b[1];
			b[1]=t;
		}
		cout<<b[1]<<a[1]<<endl;

	}
	return 0;
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值