Applying a genetic algorithm to the travelling salesman problem

本文介绍了一种使用遗传算法解决旅行商问题的方法。通过定义特定的基因操作,如交叉和变异,来寻找接近最优路径的解决方案。在示例中,通过100代进化找到了一条总距离仅为初始距离一半左右的路线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

20th August 2012 at 7:58

Applying a genetic algorithm to the travelling salesman problem

Imagine you are given a map like the one opposite. It contains a total of 20 different cities and it's your job to visit each of these cities. Before you set off on your journey you'll probably first want to plan a route so you can minimize your travel time. As humans we're pretty good at this, we can easily work out a reasonably good route without needing to do much more than glance at the map. But when we've found a route that we believe is optimal how can we test if it really is the optimal route? Well in short, we can't. Well, we can, but not really. To understand the problem here let's consider there are now just 3 cities to visit instead of the original 20. To get a single route, we would first have to choose from a choice of 3 different starting cities, then we'd have a choice of 2 second cities then there is just 1 final city left to pick to complete our route. This would give us 3 x 2 x 1 different routes in total. That's only 6 in this example, so it's pretty simple to check every route for the shortest if there are just 3 cities. If you're good at maths you may have already realized this is a factorial and factorials grow in size remarkably quick. A factorial of 10 is 3628800 and a factorial of 20 would be 2432902008176640000. So if we wanted to find the shortest route in our 20 city example we would have to test 2432902008176640000 different routes! Even with modern computing power this is unpractical and with bigger problems, it's close to impossible.

Finding a solution

Although it isn't practical to find the best solution for a problem like ours, we have algorithms that let us discover close to optimum solutions such as the nearest neighbor algorithm and swarm optimization. These algorithms can find 'good-enough' solutions to the travelling salesman problem surprisingly quickly. In this tutorial we will be looking at using a genetic algorithm to find a solution to the travelling sales man problem. If you're not familiar with what a genetic algorithm is and how they work then please have a look at the introductory tutorial below:
Creating a genetic algorithm for beginners

Finding a solution to the travelling salesman problem requires we set up our genetic algorithm in a certain specialized way. For instance, a valid solution would need to represent a route where every city is included at least once and only once. This would mean adjusting our mutation function so it doesn't just add a random city to the route, possibility causing a duplicate. The crossover function will also need to be similarly altered. One type of mutation we could use to prevent us evolving invalid solutions is swap mutation. In swap mutation if we have a set of objects we select two objects at random then simply swap their positions. Because we are only swapping objects around we don't risk causing duplicate objects within our solution.



Now we've dealt with our mutation function we need to sort out our crossover function. One algorithm we could use to produce valid offspring for our next generation is ordered crossover. In this algorithm we select a subset from our first parent, then add that subset to our child. Finally we add the objects which are not yet in our child to our child in the second parent's order.

Parents



Child



Creating our GA

Now let's look at the code of our GA. The first step is to create a class that can encode the tour cities.

City.java

/*
* City.java
* Models a city
*/


package tsp;

public class City {
     int x;
     int y;
    
     // Constructs a randomly placed city
     public City(){
         this.x = ( int)(Math.random()*200);
         this.y = ( int)(Math.random()*200);
    }
    
     // Constructs a city at chosen x, y location
     public City( int x, int y){
         this.x = x;
         this.y = y;
    }
    
     // Gets city's x coordinate
     public int getX(){
         return this.x;
    }
    
     // Gets city's y coordinate
     public int getY(){
         return this.y;
    }
    
     // Gets the distance to given city
     public double distanceTo(City city){
         int xDistance = Math.abs(getX() - city.getX());
         int yDistance = Math.abs(getY() - city.getY());
         double distance = Math.sqrt( (xDistance*xDistance) + (yDistance*yDistance) );
        
         return distance;
    }
    
    @Override
     public String toString(){
         return getX()+ ", "+getY();
    }
}

Now we can create a class that holds all of our destination cities for our tour

TourManager.java

/*
* TourManager.java
* Holds the cities of a tour
*/


package tsp;

import java.util.ArrayList;

public class TourManager {

     // Holds our cities
     private static ArrayList destinationCities = new ArrayList();

     // Adds a destination city
     public static void addCity(City city) {
        destinationCities.add(city);
    }
    
     // Get a city
     public static City getCity( int index){
         return (City)destinationCities.get(index);
    }
    
     // Get the number of destination cities
     public static int numberOfCities(){
         return destinationCities.size();
    }
}

Next we need a class that can encode our routes, these are generally referred to as tours so we'll stick to the convention.

Tour.java

/*
* Tour.java
* Stores a candidate tour
*/


package tsp;

import java.util.ArrayList;
import java.util.Collections;

public class Tour{

     // Holds our tour of cities
     private ArrayList tour = new ArrayList();
     // Cache
     private double fitness = 0;
     private int distance = 0;
    
     // Constructs a blank tour
     public Tour(){
         for ( int i = 0; i < TourManager.numberOfCities(); i++) {
            tour.add(null);
        }
    }
    
     public Tour(ArrayList tour){
         this.tour = tour;
    }

     // Creates a random individual
     public void generateIndividual() {
         // Loop through all our destination cities and add them to our tour
         for ( int cityIndex = 0; cityIndex < TourManager.numberOfCities(); cityIndex++) {
          setCity(cityIndex, TourManager.getCity(cityIndex));
        }
         // Randomly reorder the tour
        Collections.shuffle(tour);
    }

     // Gets a city from the tour
     public City getCity( int tourPosition) {
         return (City)tour.get(tourPosition);
    }

     // Sets a city in a certain position within a tour
     public void setCity( int tourPosition, City city) {
        tour.set(tourPosition, city);
         // If the tours been altered we need to reset the fitness and distance
        fitness = 0;
        distance = 0;
    }
    
     // Gets the tours fitness
     public double getFitness() {
         if (fitness == 0) {
            fitness = 1/( double)getDistance();
        }
         return fitness;
    }
    
     // Gets the total distance of the tour
     public int getDistance(){
         if (distance == 0) {
             int tourDistance = 0;
             // Loop through our tour's cities
             for ( int cityIndex=0; cityIndex < tourSize(); cityIndex++) {
                 // Get city we're travelling from
                City fromCity = getCity(cityIndex);
                 // City we're travelling to
                City destinationCity;
                 // Check we're not on our tour's last city, if we are set our
                 // tour's final destination city to our starting city
                 if(cityIndex+1 < tourSize()){
                    destinationCity = getCity(cityIndex+1);
                }
                 else{
                    destinationCity = getCity(0);
                }
                 // Get the distance between the two cities
                tourDistance += fromCity.distanceTo(destinationCity);
            }
            distance = tourDistance;
        }
         return distance;
    }

     // Get number of cities on our tour
     public int tourSize() {
         return tour.size();
    }
    
     // Check if the tour contains a city
     public boolean containsCity(City city){
         return tour.contains(city);
    }
    
    @Override
     public String toString() {
        String geneString = "|";
         for ( int i = 0; i < tourSize(); i++) {
            geneString += getCity(i)+ "|";
        }
         return geneString;
    }
}

We also need to create a class that can hold a population of candidate tours

Population.java

/*
* Population.java
* Manages a population of candidate tours
*/


package tsp;

public class Population {

     // Holds population of tours
    Tour[] tours;

     // Construct a population
     public Population( int populationSize, boolean initialise) {
        tours = new Tour[populationSize];
         // If we need to initialise a population of tours do so
         if (initialise) {
             // Loop and create individuals
             for ( int i = 0; i < populationSize(); i++) {
                Tour newTour = new Tour();
                newTour.generateIndividual();
                saveTour(i, newTour);
            }
        }
    }
    
     // Saves a tour
     public void saveTour( int index, Tour tour) {
        tours[index] = tour;
    }
    
     // Gets a tour from population
     public Tour getTour( int index) {
         return tours[index];
    }

     // Gets the best tour in the population
     public Tour getFittest() {
        Tour fittest = tours[0];
         // Loop through individuals to find fittest
         for ( int i = 1; i < populationSize(); i++) {
             if (fittest.getFitness() <= getTour(i).getFitness()) {
                fittest = getTour(i);
            }
        }
         return fittest;
    }

     // Gets population size
     public int populationSize() {
         return tours.length;
    }
}

Our next class will need to evolve our population of solutions

GA.java

/*
* GA.java
* Manages algorithms for evolving population
*/


package tsp;

public class GA {

     /* GA parameters */
     private static final double mutationRate = 0.015;
     private static final int tournamentSize = 5;
     private static final boolean elitism = true;

     // Evolves a population over one generation
     public static Population evolvePopulation(Population pop) {
        Population newPopulation = new Population(pop.populationSize(), false);

         // Keep our best individual if elitism is enabled
         int elitismOffset = 0;
         if (elitism) {
            newPopulation.saveTour(0, pop.getFittest());
            elitismOffset = 1;
        }

         // Crossover population
         // Loop over the new population's size and create individuals from
         // Current population
         for ( int i = elitismOffset; i < newPopulation.populationSize(); i++) {
             // Select parents
            Tour parent1 = tournamentSelection(pop);
            Tour parent2 = tournamentSelection(pop);
             // Crossover parents
            Tour child = crossover(parent1, parent2);
             // Add child to new population
            newPopulation.saveTour(i, child);
        }

         // Mutate the new population a bit to add some new genetic material
         for ( int i = elitismOffset; i < newPopulation.populationSize(); i++) {
            mutate(newPopulation.getTour(i));
        }

         return newPopulation;
    }

     // Applies crossover to a set of parents and creates offspring
     public static Tour crossover(Tour parent1, Tour parent2) {
         // Create new child tour
        Tour child = new Tour();

         // Get start and end sub tour positions for parent1's tour
         int startPos = ( int) (Math.random() * parent1.tourSize());
         int endPos = ( int) (Math.random() * parent1.tourSize());

         // Loop and add the sub tour from parent1 to our child
         for ( int i = 0; i < child.tourSize(); i++) {
             // If our start position is less than the end position
             if (startPos < endPos && i > startPos && i < endPos) {
                child.setCity(i, parent1.getCity(i));
            } // If our start position is larger
             else if (startPos > endPos) {
                 if (!(i < startPos && i > endPos)) {
                    child.setCity(i, parent1.getCity(i));
                }
            }
        }

         // Loop through parent2's city tour
         for ( int i = 0; i < parent2.tourSize(); i++) {
             // If child doesn't have the city add it
             if (!child.containsCity(parent2.getCity(i))) {
                 // Loop to find a spare position in the child's tour
                 for ( int ii = 0; ii < child.tourSize(); ii++) {
                     // Spare position found, add city
                     if (child.getCity(ii) == null) {
                        child.setCity(ii, parent2.getCity(i));
                        break;
                    }
                }
            }
        }
         return child;
    }

     // Mutate a tour using swap mutation
     private static void mutate(Tour tour) {
         // Loop through tour cities
         for( int tourPos1=0; tourPos1 < tour.tourSize(); tourPos1++){
             // Apply mutation rate
             if(Math.random() < mutationRate){
                 // Get a second random position in the tour
                 int tourPos2 = ( int) (tour.tourSize() * Math.random());

                 // Get the cities at target position in tour
                City city1 = tour.getCity(tourPos1);
                City city2 = tour.getCity(tourPos2);

                 // Swap them around
                tour.setCity(tourPos2, city1);
                tour.setCity(tourPos1, city2);
            }
        }
    }

     // Selects candidate tour for crossover
     private static Tour tournamentSelection(Population pop) {
         // Create a tournament population
        Population tournament = new Population(tournamentSize, false);
         // For each place in the tournament get a random candidate tour and
         // add it
         for ( int i = 0; i < tournamentSize; i++) {
             int randomId = ( int) (Math.random() * pop.populationSize());
            tournament.saveTour(i, pop.getTour(randomId));
        }
         // Get the fittest tour
        Tour fittest = tournament.getFittest();
         return fittest;
    }
}

Now we can create our main method, add our cities and evolve a route for our travelling salesman problem.

TSP_GA.java

/*
* TSP_GA.java
* Create a tour and evolve a solution
*/


package tsp;

public class TSP_GA {

     public static void main(String[] args) {

         // Create and add our cities
        City city = new City(60, 200);
        TourManager.addCity(city);
        City city2 = new City(180, 200);
        TourManager.addCity(city2);
        City city3 = new City(80, 180);
        TourManager.addCity(city3);
        City city4 = new City(140, 180);
        TourManager.addCity(city4);
        City city5 = new City(20, 160);
        TourManager.addCity(city5);
        City city6 = new City(100, 160);
        TourManager.addCity(city6);
        City city7 = new City(200, 160);
        TourManager.addCity(city7);
        City city8 = new City(140, 140);
        TourManager.addCity(city8);
        City city9 = new City(40, 120);
        TourManager.addCity(city9);
        City city10 = new City(100, 120);
        TourManager.addCity(city10);
        City city11 = new City(180, 100);
        TourManager.addCity(city11);
        City city12 = new City(60, 80);
        TourManager.addCity(city12);
        City city13 = new City(120, 80);
        TourManager.addCity(city13);
        City city14 = new City(180, 60);
        TourManager.addCity(city14);
        City city15 = new City(20, 40);
        TourManager.addCity(city15);
        City city16 = new City(100, 40);
        TourManager.addCity(city16);
        City city17 = new City(200, 40);
        TourManager.addCity(city17);
        City city18 = new City(20, 20);
        TourManager.addCity(city18);
        City city19 = new City(60, 20);
        TourManager.addCity(city19);
        City city20 = new City(160, 20);
        TourManager.addCity(city20);

         // Initialize population
        Population pop = new Population(50, true);
        System.out.println( "Initial distance: " + pop.getFittest().getDistance());

         // Evolve population for 50 generations
        pop = GA.evolvePopulation(pop);
         for ( int i = 0; i < 100; i++) {
            pop = GA.evolvePopulation(pop);
        }

         // Print final results
        System.out.println( "Finished");
        System.out.println( "Final distance: " + pop.getFittest().getDistance());
        System.out.println( "Solution:");
        System.out.println(pop.getFittest());
    }
}

Output:

Initial distance: 1996
Finished
Final distance: 940
Solution:
|60, 200|20, 160|40, 120|60, 80|20, 40|20, 20|60, 20|100, 40|160, 20|200, 40|180, 60|120, 80|140, 140|180, 100|200, 160|180, 200|140, 180|100, 120|100, 160|80, 180|

As you can see in just 100 generations we were able to find a route just over twice as good as our original and probably pretty close to optimum.

Final Results:


Social Links

http://www.theprojectspot.com/tutorial-post/applying-a-genetic-algorithm-to-the-travelling-salesman-problem/5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值